Radian

 
1.1   Radian
 
  • Apart from the unit of degrees, angles can be also be measured in the unit of radians
 

 Definition of One Radian

       
 

The angle subtended at the centre of a circle is \(1\) radian if the length of the arc is equal to the radius of the circle.

 
     
 

 
  • The formula to convert degrees to radians:
     
   \(\begin{aligned} \ x^\circ&=\left( x \times \dfrac{\pi}{180} \right) \text{ rad} \\\\ &=\left( x \times \dfrac{3.142}{180} \right) \text{ rad} \end{aligned} \)   
     
 
  • The formula to convert radians to degrees:
     
   \(\begin{aligned} \ x \text{ rad}&=\left( x \times \dfrac{180}{\pi} \right) ^\circ \\\\ &=\left( x \times \dfrac{180}{3.142} \right) ^\circ \end{aligned} \)   
     
 
 

 

Radian

 
1.1   Radian
 
  • Apart from the unit of degrees, angles can be also be measured in the unit of radians
 

 Definition of One Radian

       
 

The angle subtended at the centre of a circle is \(1\) radian if the length of the arc is equal to the radius of the circle.

 
     
 

 
  • The formula to convert degrees to radians:
     
   \(\begin{aligned} \ x^\circ&=\left( x \times \dfrac{\pi}{180} \right) \text{ rad} \\\\ &=\left( x \times \dfrac{3.142}{180} \right) \text{ rad} \end{aligned} \)   
     
 
  • The formula to convert radians to degrees:
     
   \(\begin{aligned} \ x \text{ rad}&=\left( x \times \dfrac{180}{\pi} \right) ^\circ \\\\ &=\left( x \times \dfrac{180}{3.142} \right) ^\circ \end{aligned} \)