The diagram below shows the position of R, S, and T. The ST distance is 0.3 times the RS distance. What is the distance, in km, from S to T?
MATHEMATICAL SENTENCE: \(0.3\space\text{km}\times0.4\space\text{km}=\) \(\begin{array} {rr} \small{\color{red}{1}}\quad\;\; \\0\;.\;3 \\\times\quad0\;.\;4 \\\hline\quad1\;\;\;\,2 \\+\quad0\;\;\;\,0\;\;\;\,0 \\\hline 0\;\,.\,1\;\;\;2 \\\hline \end{array}\)
Tips: The position of the decimal point of the product depends on the total number of decimal places in the number being multiplied. \(0.3\text{ km}\times0.4\text{ km}=0.12\text{ km}\)
So, the distance from S to T is 0.12 km.
Ahmad will pour \(2.5\ l\) the same amount of orange juice into several bottles. Each bottle contains \(0.5\ l\). How many bottles are needed?
MATHEMATICAL SENTENCE:
\(2.5\ l\div0.5\ l=\)
\(\;\;\;\;\;\;\;\,\;\;5\,\\0.5\overline{\smash{)}\;2.5}\;\\\,\underline{-\;\;\;2.5}\;\;\, \\\;\;\;\;\;\;\;\;\;0\)
So, the number of bottles needed is 5 bottles.
Get your homework done with live tutors’ help