Fractions

2.1  Fractions
 
DIVISIONS FOR FRACTIONS
DIVIDE PROPER FRACTIONS BY WHOLE NUMBERS


Divide \(\frac{3}{4}\) of the pizza into 6 equal portions. What is the fraction of each part?

SOLUTION:

\(\frac{3}{4}\div6=\)


\(\;\;\;\frac{3}{4}\div6\\\,\\=\frac{3}{4}\div\frac{6}{1}\\\,\\=\frac{3}{4}\times\frac{1}{6}\\\,\\=\frac{3}{24}\\\,\\=\frac{1}{8}\)

So, each part will be \(\frac{1}{8}\).

 
DIVIDE MIXED NUMBERS BY WHOLE NUMBERS


Aminah will cut the \(2\frac{1}{4}\text{ m}\) ribbon below into 3 pieces of equal length. What is the length, in fractions, of each piece of ribbon?

SOLUTION:

\(2\frac{1}{4}\div3=\)


\(\;\;\;2\frac{1}{4}\div3\\\,\\=\frac{9}{4}\div\frac{3}{1}\\\,\\=\frac{9}{4}\times\frac{1}{3}\\\,\\=\frac{9}{12}\\\,\\=\frac{3}{4}\)

So, the length of each ribbon cut is \(\frac{3}{4}\text{ m}\).

 
DIVIDE A PROPER FRACTION BY A PROPER FRACTION


Sani has \(\frac{1}{2}\ l\) water. Sani uses \(\frac{1}{4}\ l\) of water for each trial to see how far the water rocket moves.

\(\frac{1}{2}\ l=\) 
   
\(\frac{1}{4}\ l=\)  
       

 

SOLUTION:

\(\frac{1}{2}\div\frac{1}{4}=\)

\(\frac{1}{2}\div\frac{1}{4}\\\,\\=\frac{1}{2}\times\frac{4}{1}\\\,\\=\frac{4}{2}\\\,\\=2\)

So, the number of trials is 2.

 
DIVIDE MIXED NUMBERS BY PROPER FRACTIONS


How many \(\frac{1}{4}\text{ kg}\) in a \(1\frac{1}{2}\)kg?

SOLUTION:

\(1\frac{1}{2}\div\frac{1}{4}=\)

\(\;\;\;1\frac{1}{2}\div\frac{1}{4}\\\,\\=\frac{3}{2}\times\frac{4}{1}\\\,\\=\frac{12}{2}\\\,\\=6\)

So, there are 6 parts of a \(\frac{1}{4}\text{ kg}\) in \(1\frac{1}{2}\) kg.

 

Fractions

2.1  Fractions
 
DIVISIONS FOR FRACTIONS
DIVIDE PROPER FRACTIONS BY WHOLE NUMBERS


Divide \(\frac{3}{4}\) of the pizza into 6 equal portions. What is the fraction of each part?

SOLUTION:

\(\frac{3}{4}\div6=\)


\(\;\;\;\frac{3}{4}\div6\\\,\\=\frac{3}{4}\div\frac{6}{1}\\\,\\=\frac{3}{4}\times\frac{1}{6}\\\,\\=\frac{3}{24}\\\,\\=\frac{1}{8}\)

So, each part will be \(\frac{1}{8}\).

 
DIVIDE MIXED NUMBERS BY WHOLE NUMBERS


Aminah will cut the \(2\frac{1}{4}\text{ m}\) ribbon below into 3 pieces of equal length. What is the length, in fractions, of each piece of ribbon?

SOLUTION:

\(2\frac{1}{4}\div3=\)


\(\;\;\;2\frac{1}{4}\div3\\\,\\=\frac{9}{4}\div\frac{3}{1}\\\,\\=\frac{9}{4}\times\frac{1}{3}\\\,\\=\frac{9}{12}\\\,\\=\frac{3}{4}\)

So, the length of each ribbon cut is \(\frac{3}{4}\text{ m}\).

 
DIVIDE A PROPER FRACTION BY A PROPER FRACTION


Sani has \(\frac{1}{2}\ l\) water. Sani uses \(\frac{1}{4}\ l\) of water for each trial to see how far the water rocket moves.

\(\frac{1}{2}\ l=\) 
   
\(\frac{1}{4}\ l=\)  
       

 

SOLUTION:

\(\frac{1}{2}\div\frac{1}{4}=\)

\(\frac{1}{2}\div\frac{1}{4}\\\,\\=\frac{1}{2}\times\frac{4}{1}\\\,\\=\frac{4}{2}\\\,\\=2\)

So, the number of trials is 2.

 
DIVIDE MIXED NUMBERS BY PROPER FRACTIONS


How many \(\frac{1}{4}\text{ kg}\) in a \(1\frac{1}{2}\)kg?

SOLUTION:

\(1\frac{1}{2}\div\frac{1}{4}=\)

\(\;\;\;1\frac{1}{2}\div\frac{1}{4}\\\,\\=\frac{3}{2}\times\frac{4}{1}\\\,\\=\frac{12}{2}\\\,\\=6\)

So, there are 6 parts of a \(\frac{1}{4}\text{ kg}\) in \(1\frac{1}{2}\) kg.