Percentages

2.3  Percentages
CONVERT DECIMALS TO PERCENTAGES


Convert \(1.5 \) to a percentage.
\(1.5=\underline{\ \ \ \ \ \ \ \ \ \ }\%\)

SOLUTION:
\(1.5=1+0.5\)
      \(=100\%+50\%\)
      \(=150\%\)

In conclusion, \(1.5\) to the percentage is \(150\%\).

 
ADDITION & SUBTRACTION OF PERCENTAGES


Calculate the total percentage of vitamin B6, calcium and iron for a \(30\,\ell\) serving of cereal with \(125\text{ m}\ell\) of skimmed milk below.

SOLUTION:
\(46\%+24\%+16\%=\underline{\ \ \ \ \ \ }\%\)

\(\begin{array} {rr} \small{\color{red}{1}}\quad\;\;\; \\4\;6\;\% \\2\;4\;\% \\+\quad1\;6\;\% \\\hline 8\;6\;\% \\\hline \end{array}\)

In conclusion, the total percentage of vitamin B6, calcium and iron is \(86\%\)

 
QUANTITY VALUE & PERCENTAGE VALUE


Jamel's rope length is \(2.5\text{ m}\) while Zainab's rope length is \(90\%\) of Jamel's rope length. How long is \(90\%\) of \(2.5\text{ m}\)?

SOLUTION:

\(90\%\) from \(2.5\text{ m}\) means \(90\%\times2.5\text{ m}\).
\(90\%\times2.5\text{ m}=\underline{\ \ \ \ \ \ \ \ \ }\text{ m}\)

\(2.5\times\dfrac{90}{100}=2.25\)

In conclusion, the length \(90\%\) of \(2.5\text{ m}\) rope length is \(2.25\text{ m}\).

Percentages

2.3  Percentages
CONVERT DECIMALS TO PERCENTAGES


Convert \(1.5 \) to a percentage.
\(1.5=\underline{\ \ \ \ \ \ \ \ \ \ }\%\)

SOLUTION:
\(1.5=1+0.5\)
      \(=100\%+50\%\)
      \(=150\%\)

In conclusion, \(1.5\) to the percentage is \(150\%\).

 
ADDITION & SUBTRACTION OF PERCENTAGES


Calculate the total percentage of vitamin B6, calcium and iron for a \(30\,\ell\) serving of cereal with \(125\text{ m}\ell\) of skimmed milk below.

SOLUTION:
\(46\%+24\%+16\%=\underline{\ \ \ \ \ \ }\%\)

\(\begin{array} {rr} \small{\color{red}{1}}\quad\;\;\; \\4\;6\;\% \\2\;4\;\% \\+\quad1\;6\;\% \\\hline 8\;6\;\% \\\hline \end{array}\)

In conclusion, the total percentage of vitamin B6, calcium and iron is \(86\%\)

 
QUANTITY VALUE & PERCENTAGE VALUE


Jamel's rope length is \(2.5\text{ m}\) while Zainab's rope length is \(90\%\) of Jamel's rope length. How long is \(90\%\) of \(2.5\text{ m}\)?

SOLUTION:

\(90\%\) from \(2.5\text{ m}\) means \(90\%\times2.5\text{ m}\).
\(90\%\times2.5\text{ m}=\underline{\ \ \ \ \ \ \ \ \ }\text{ m}\)

\(2.5\times\dfrac{90}{100}=2.25\)

In conclusion, the length \(90\%\) of \(2.5\text{ m}\) rope length is \(2.25\text{ m}\).