Basic Operation on Matrices
For matrix \(A=\begin{aligned}\begin{bmatrix} a_{11}&a_{12}\\ a_{21}&a_{22}\end{bmatrix}\end{aligned}\)
and \(B=\begin{aligned}\begin{bmatrix} b_{11}&b_{12}\\ b_{21}&b_{22}\end{bmatrix}\end{aligned}\),
\(A+B=\begin{aligned}\begin{bmatrix} a_{11}+b_{11}&a_{12}+b_{12}\\ a_{21}+b_{21}&a_{22}+b_{2}\end{bmatrix}\end{aligned}\)
and \(A-B=\begin{aligned}\begin{bmatrix} a_{11}-b_{11}&a_{12}-b_{12}\\ a_{21}-b_{21}&a_{22}-b_{2}\end{bmatrix}\end{aligned}\).
It is given that \(C=\begin{aligned}\begin{bmatrix} 10&-8&4\\ 6&-11&7\end{bmatrix}\end{aligned}\)
and \(D=\begin{aligned}\begin{bmatrix} 14&-2&1\\ -3&5&9\end{bmatrix}\end{aligned}\),
calculate
(a)
\(\begin{aligned} \hspace{1mm}&C+D\\&\hspace{-2mm}=\begin{bmatrix} 10+14&-8+(-2)&4+1\\ 6+(-3)&-11+5&7+9\end{bmatrix}\\&\hspace{-2mm}=\begin{bmatrix} 24&-10&5\\ 3&-6&7+16\end{bmatrix}\end{aligned}\)
(b)
\(\begin{aligned}& \hspace{1mm}D-C\\&\hspace{-2mm}=\begin{bmatrix}14-10&-2-(-8)&1-4\\ -3-6&5-(-11)&9-7\end{bmatrix}\\&\hspace{-2mm}=\begin{bmatrix} 4&6&-3\\ -9&16&2\end{bmatrix}\end{aligned}\)
This formula means that each element in matrix A is added to the same element repeatedly for \(n\) times. Therefore, to multiply a matrix by a number, multiply every element in the matrix with the number.
For example:
It is given that matrix \(A=\begin{aligned}\begin{bmatrix} a_{11}&a_{12}\\ a_{21}&a_{22}\end{bmatrix}\end{aligned}\) and \(n\) is a number.
Hence
It is given that \(F=\begin{aligned}\begin{bmatrix} 10&-8\\ 6&-11\\5&7\end{bmatrix}\end{aligned}\),
calculate \(3F\).
Given that \(P=\begin{aligned}\begin{bmatrix} 14&-2\\ -3&5\end{bmatrix}\end{aligned}\)
and \(Q=\begin{aligned}\begin{bmatrix} 3&-5\\ 7&11\end{bmatrix}\end{aligned}\),
calculate \(3(P-Q)\).
and \(B=\begin{aligned}\begin{bmatrix} b_{11}&b_{12}&b_{13}\\ b_{21}&b_{22}&b_{23}\end{bmatrix}\end{aligned}\),
the multiplication of \(AB\) can be performed and the order of \(AB\) is \(2\times 3\).
Given that matrix \(P=\begin{aligned}\begin{bmatrix} 2\\ -3\end{bmatrix}\end{aligned}\)
and \(Q=\begin{aligned}\begin{bmatrix} 3&7\\ -5&2\\6&1\end{bmatrix}\end{aligned}\),
Calculate \(QP\).
Live class daily with celebrity tutors
There is something wrong with this question.