Inverse Variation
\(\begin{aligned}y\propto \frac{1}{x^n}\end{aligned}\hspace{1mm}\text{(variation relation)}\) or
\(\begin{aligned} y=\frac{k}{x^n} \end{aligned} \hspace{1mm} \text{(equation relation)}\)
Given \(y=3\) when \(x=7\).
Express \(y\) in terms of \(x\) if
\(\begin{aligned}a)\hspace{1mm}& y\propto \frac{1}{x}\implies y = \frac{k}{x} \dots (1) \end{aligned}\)
Substitute \(y=3\) and \(x=7\) into \((1)\):
\(\begin{aligned}3&=\frac{k}{7}\implies k=(3)(7)\\\\&=21.\\\\&\therefore y=\dfrac{21}{x}. \end{aligned}\)
\(\begin{aligned}b)\hspace{1mm}& y\propto \frac{1}{x^2}\implies y = \frac{l}{x^2} \dots (2) \end{aligned}\)
Substitute \(y=3\) and \(x=7\) into \((2)\):
\(\begin{aligned}3&=\frac{l}{7^2}\implies k=(3)(49)\\\\&=147.\\\\ &\therefore y=\dfrac{147}{x^2}. \end{aligned}\)
Assess yourself by staged practices