| 
				
					
						|  |  
						| Equation of a straight line: |  
						|  |  
						| \(y=mx+c\) |  
						|  |  
						| where \(m\) is the gradient and \(c\) is the \(y\)-intercept. |  
						|  |  
						| 
							The graph of function \(y=h\) is a straight line parallel to \(x\)-axis.The graph of function \(x=h\) is a straight line parallel to \(y\)-axis. |  
						|  |  
				
					
						| Example |  
						|  |  
						| Determine the gradient and \(y\)-intercept of the straight line \(y=4x+9\). |  
						|  |  
						| Noted that the general equation of a straight line is \(y=mx+c\). We need to compare \(y=4x+9\) with \(y=mx+c\). So, \(m=4\) and \(c=9\). Thus, the gradient is \(4\) and the \(y\)-intercept is \(9\). |  
				
					
						|  |  
						| Relationship between the equation of straight lines in the form of \(ax+by=c\), \(\dfrac{x}{a} +\dfrac{y}{b}=1\) and \(y=mx+c\): |  
						|  |  
						| 
							The values of \(x\)-intercept, \(y\)-intercept and the gradient of these three straight lines are the same.Produce the same straight line graph if the values of \(x\)-intercept and \(y\)-intercept are the same.The straight line equation, \(y=mx+c\), can also be written in the form of \(ax+by=c\) and \(\dfrac{x}{a} +\dfrac{y}{b}=1\) where \(a\neq0\) and \(b\neq0\). |  
				
					
						|  |  
						| Example |  
						|  |  
						| Change the equation \(4x+3y=12\) to the form of \(\dfrac{x}{a} +\dfrac{y}{b}=1\) and \(y=mx+c\). |  
						|  |  
						| i) For \(\dfrac{x}{a} +\dfrac{y}{b}=1\) \(\begin{aligned} 4x+3y&=12 \\\\\dfrac{4x}{12}+\dfrac{3y}{12}&=\dfrac{12}{12} \\\\\dfrac{x}{3}+\dfrac{y}{4}&=1. \end{aligned}\) |  
						|  |  
						| ii) For \(y=mx+c\) \(\begin{aligned} 4x+3y&=12 \\\\3y&=-4x+12 \\\\ \dfrac{3y}{3}&=\dfrac{-4x}{3}+\dfrac{12}{3} \\\\y&=-\dfrac{4}{3}x +4. \end{aligned}\) |  
				
					
						|  |  
						| The points on a straight line and the equation of the line: |  
						|  |  
						| 
							Points on a straight line or points that the straight line passes through will satisfy the equation of a straight line.Points that do not lie on a straight line will not satisfy the equation.  |  
				
					
						|  |  
						| Example |  
						|  |  
						| Determine whether point \(P\) satisfy the given equation. \(y= 3x+2\), \(P (2,8)\) |  
						|  |  
						| On the left side of the equation, \(y=8\). Meanwhile, on the right side of the equation is, \(\begin{aligned} 3x+2&= 3(2)+2 \\\\&=8. \end{aligned}\) We can see that the value on the left and right sides of the equation is equal. \(P (2,8)\) lies on the straight line \(y= 3x+2\). Thus, point \(P\) satisfy the equation \(y= 3x+2\). |  
						|  |  
						| 
							For points that lie on \(x\)-axis its value of \(y\)-coordinate is \(0\).For points that lie on \(y\)-axis its value of \(x\)-coordinate is \(0\). |  
						|  |  
						| Gradient of a straight line, \(m\) \(m=-\dfrac{y-\text{intercept}}{x-\text{intercept}}\) |  
				
					
						|  |  
						| The gradients of parallel lines: |  
						|  |  
						| 
							Straight lines that have the same gradient are parallel. |  
						|  |  
						| Example |  
						|  |  
						| Determine whether \(y=3x+8\) is parallel to \(6y=3x-9\). |  
						|  |  
						| Noted that the equation of a straight line is \(y=mx+c\), where \(m\) is the gradient and \(c\) is the \(y\)-intercept. For \(y=3x+8\), the gradient is \(m=3\). For \(6y=3x-9\), \(\begin{aligned} 6y&=3x-9 \\\\y&=\dfrac{3x}{6}-\dfrac{9}{6} \\\\y&=\dfrac{1}{2}x-\dfrac{3}{2}. \end{aligned}\) So, the gradient is \(m=\dfrac{1}{2}\). The gradient of both straight lines is not equal. Thus, \(y=3x+8\) and \(6y=3x-9\) is not parallel. |  
				
					
						|  |  
						| The equation of a straight line: |  
						|  |  
						| 
							Determine the value of gradient, \(m\).Determine a point which the straight line passes through or a point that lies on the straight line.Substitute the gradient, \(m\), the \(x\)-coordinate and the \(y\)-coordinate from the point into the equation \(y=mx+c\) to determine the value of \(c\), that is the \(y\)-intercept.Substitute the gradient value and \(y\)-intercept value specified in the equation of the straight line \(y=mx+c\). |  
						|  |  
						| The point of intersection of two straight lines: |  
						|  |  
						| Can be determined by the following methods; 
							Graphical methodSubstitution methodElimination method |  
						|  |  
						| Example |  
						|  |  
						| Determine the point of intersection of the straight lines \(2x+y=5\) and \(x+2y=1\). |  
						|  |  
						| By using the substitution method; \(2x+y=5\)  ------\(\boxed{1}\) \(x+2y=1\)  ------\(\boxed{2}\) From \(\boxed{1}\),  \(y=5-2x\)  ------\(\boxed{3}\) Substitute \(\boxed{3}\) in \(\boxed{2}\), \(\begin{aligned} x+2(5-2x)&=1 \\\\x+10-4x&=1 \\\\x-4x&=1-10 \\\\-3x&=-9 \\\\x&=3. \end{aligned}\) Substitute \(x=3\) in \(\boxed{3}\), \(\begin{aligned} y&=5-2(3) \\\\y&=-1. \end{aligned}\) Hence, the point of intersection is \((3,-1)\). |  
						|  |  |