Cyclic Quadrilaterals

 
6.2  Cyclic Quadrilaterals
 
  Definition  
     
 

A cyclic quadrilateral is a quadrilateral in a circle where all four vertices of quadrilateral lie on the circumference of the circle.

 
 
  • The sum of opposite interior angles in a cyclic quadrilateral is \(180^\circ\).
 
  Example  
     
 

The diagram below shows a cyclic quadrilateral \(PQRS\) and a straight line \(RST\).

 
     
 

Calculate the value of \(\angle PSR\).

 
     
 

First, calculate the value of \(y\).

\(\begin{aligned} \angle PQR + \angle PSR &= 180{^\circ} \\\\ 4y+ 2y&= 180{^\circ} \\\\6y&=180{^\circ} \\\\y&=30{^\circ}. \\\\\end{aligned}\)

Thus,

\(\begin{aligned}\angle PSR&=30^\circ\times2 \\\\&=60^\circ. \end{aligned}\)

 
 

 

Cyclic Quadrilaterals

 
6.2  Cyclic Quadrilaterals
 
  Definition  
     
 

A cyclic quadrilateral is a quadrilateral in a circle where all four vertices of quadrilateral lie on the circumference of the circle.

 
 
  • The sum of opposite interior angles in a cyclic quadrilateral is \(180^\circ\).
 
  Example  
     
 

The diagram below shows a cyclic quadrilateral \(PQRS\) and a straight line \(RST\).

 
     
 

Calculate the value of \(\angle PSR\).

 
     
 

First, calculate the value of \(y\).

\(\begin{aligned} \angle PQR + \angle PSR &= 180{^\circ} \\\\ 4y+ 2y&= 180{^\circ} \\\\6y&=180{^\circ} \\\\y&=30{^\circ}. \\\\\end{aligned}\)

Thus,

\(\begin{aligned}\angle PSR&=30^\circ\times2 \\\\&=60^\circ. \end{aligned}\)