Velocity function, \(v\) is given by:
\(\begin{aligned} v&=\int a\, dt \\ &=\int (4-2t)\, dt \\ &=4t-t^2+c. \end{aligned}\)
When \(t=0\) and \(v=12\), then:
\(\begin{aligned} 12&=4(0)-0^2+c \\ c&=12. \end{aligned}\)
Hence, at time \(t\), \(v=12+4t-t^2\).
Displacement function, \(s\) is given by:
\(\begin{aligned} s&=\int v\,dt \\ &=\int (12+4t-t^2)\, dt \\ &=12t+2t^2-\dfrac{1}{3}t^3+c. \end{aligned}\)
When \(t=0\) and \(s=0\), then:
\(\begin{aligned} 0&=12(0)+2(0)^2-\dfrac{1}{3}(0)^3+c \\ c&=0. \end{aligned}\)
Hence, at time \(t\), \(s=12t+2t^2-\dfrac{1}{3}t^3\).
(a)
When \(t=3\),
\(\begin{aligned} s&=12(3)+2(3)^2-\dfrac{1}{3}(3)^3 \\ &=36+18-9 \\ &=45. \end{aligned}\)
Hence, the instantaneous displacement when \(t=3\) is \(45\) m.
(b)
When the particle is at rest, \(v=0\).
Then,
\(\begin{aligned} 12+4t-t^2&=0 \\ t^2-4t-12&=0 \\ (t+2)(t-6)&=0 \end{aligned}\)
Since \(t\ge 0\), \(t=6\).
When \(t=6\),
\(\begin{aligned} s&=12(6)+2(6)^2-\dfrac{1}{3}(6)^3 \\ &=72+72-72 \\ &=72. \end{aligned}\)
Hence, the instantaneous displacement when the particle is at rest is \(72\) m.
|