\(\text{Area}=\dfrac{1}{2}\times\text{base}\times \text{height}=\dfrac{1}{2}\times b\times h\)
\(\begin{aligned} \text{Area}&=\dfrac{1}{2}ab\sin{C} \\\\ &=\dfrac{1}{2}ac\sin{B} \\\\ &=\dfrac{1}{2}bc\sin{A} \end{aligned}\)
\(\text{Area}=\sqrt{s(s-a)(s-b)(s-c)}\)
Based on the triangle \(ABC\) above, find the area of the triangle.
Based on the question above, given:
\(AB=13\) cm, \(BC=16\) cm, \(\angle{ABC}=36^\circ\).
Using the trigonometry formula:
\(\begin{aligned} \text{Area of }\Delta ABC&=\dfrac{1}{2}ac\sin{B} \\\\ &=\dfrac{1}{2}(16)(13)\sin{36^\circ} \\\\ &=61.13\text{ cm}^2. \end{aligned}\)
The diagram above shows a triangle \(ABC\).
By using Heron's formula, calculate the area of the triangle.
Based on the question, given:
\(a=1.8\) cm, \(b=3\) cm, \(c=3.8\) cm.
Calculate the semi-perimeter, \(s\):
\(\begin{aligned} s&=\dfrac{a+b+c}{2} \\\\ &=\dfrac{1.8+3+3.8}{2} \\\\ &=4.3. \end{aligned}\)
Substitute the value of \(a\), \(b\), \(c\), and \(s\) into the Heron's formula:
\(\begin{aligned} \text{Area}&=\sqrt{s(s-a)(s-b)(s-c)} \\ &=\sqrt{4.3(4.3-1.8)(4.3-3)(4.3-3.8)} \\ &=\sqrt{4.3(2.5)(1.3)(0.5)}\\ &=\sqrt{6.9875}\\ &=2.6434\text{ cm}^2. \end{aligned}\)
Challenge your friend in timed Quiz battle