Quadratic Functions

2.3 Quadratic Functions
 
A visual representation of a quadratic function's form and its properties.
 
Quadratic Function Properties
  • A quadratic function can be expressed in the form \(f(x)=ax^2+bx+c\), where \(a\), \(b\) and \(c\) are constants and \(a \ne 0\).

  • If \(a\gt 0\), graph has the shape \(\LARGE \smile\) which passes through a minimum point.

  • If \(a\lt 0\), graph has the shape \(\LARGE \frown\) which passes through a maximum point.

 
Relationship between position of the graph on \(x\)-axis and its type of roots
Two Different Real Roots

\(b^2-4ac>0\)

Two Equal Real Roots

\(b^2-4ac=0\)

No Real Roots

\(b^2-4ac<0\)

 
Other form of Quadratic Function Properties
Vertex Form
  • A quadratic function can be expressed in the form \(f(x)=a(x-h)^2+k\) where \(a\)\(h\) and \(k\) are constants and \(a \neq 0\).
  • In this form, \(x=h\) is an axis of symmetry and \((h,k)\) is the coordinate of minimum or maximum point.
Factored Form
  • A quadratic function can be expressed in the form \(f(x)=a(x-p)(x-q)\) where \(a\)\(p\) and \(q\) are constants and \(a \neq 0\).
  • In this form, the roots of the quadratic function are \(p\) and \(q\).
  • The axis of symmetry, \(x=\dfrac{p+q}{2}\).
  • The coordinate of minimum or maximum point is \(\left[ \dfrac{p+q}{2}, f \left( \dfrac{p+q}{2} \right) \right]\).
 

 

Example
Question

Express quadratic function, \(f(x)=2\left(x+\dfrac{9}{4}\right)^2-\dfrac{1}{8}\) in the intercept form, \(f(x)=a(x-p)(x-q)\), where \(a\)\(p\), and \(q\) are constants and \(p \lt q\). Hence, state the values of \(a\)\(p\), and \(q\).

Solution

Convert the vertex form of the quadratic function into the general form first.

\(\begin{aligned} f(x)&=2\left(x+\dfrac{9}{4}\right)^2-\dfrac{1}{8} \\ &=2\left(x^2+\dfrac{9}{2}x+\dfrac{81}{16}\right)-\dfrac{1}{8}\\ &=2x^2+9x+10 \\ &=(2x+5)(x+2)\\ &=2\left(x+\dfrac{5}{2}\right)(x+2). \end{aligned}\)

Thus, the quadratic function in the intercept form for \(f(x)=2\left(x+\dfrac{9}{4}\right)^2-\dfrac{1}{8}\) can be expressed as \(f(x)=2\left(x+\dfrac{5}{2}\right)(x+2)\), where \(a=2\)\(p=-\dfrac{5}{2}\), and \(q=-2\).

 

Quadratic Functions

2.3 Quadratic Functions
 
A visual representation of a quadratic function's form and its properties.
 
Quadratic Function Properties
  • A quadratic function can be expressed in the form \(f(x)=ax^2+bx+c\), where \(a\), \(b\) and \(c\) are constants and \(a \ne 0\).

  • If \(a\gt 0\), graph has the shape \(\LARGE \smile\) which passes through a minimum point.

  • If \(a\lt 0\), graph has the shape \(\LARGE \frown\) which passes through a maximum point.

 
Relationship between position of the graph on \(x\)-axis and its type of roots
Two Different Real Roots

\(b^2-4ac>0\)

Two Equal Real Roots

\(b^2-4ac=0\)

No Real Roots

\(b^2-4ac<0\)

 
Other form of Quadratic Function Properties
Vertex Form
  • A quadratic function can be expressed in the form \(f(x)=a(x-h)^2+k\) where \(a\)\(h\) and \(k\) are constants and \(a \neq 0\).
  • In this form, \(x=h\) is an axis of symmetry and \((h,k)\) is the coordinate of minimum or maximum point.
Factored Form
  • A quadratic function can be expressed in the form \(f(x)=a(x-p)(x-q)\) where \(a\)\(p\) and \(q\) are constants and \(a \neq 0\).
  • In this form, the roots of the quadratic function are \(p\) and \(q\).
  • The axis of symmetry, \(x=\dfrac{p+q}{2}\).
  • The coordinate of minimum or maximum point is \(\left[ \dfrac{p+q}{2}, f \left( \dfrac{p+q}{2} \right) \right]\).
 

 

Example
Question

Express quadratic function, \(f(x)=2\left(x+\dfrac{9}{4}\right)^2-\dfrac{1}{8}\) in the intercept form, \(f(x)=a(x-p)(x-q)\), where \(a\)\(p\), and \(q\) are constants and \(p \lt q\). Hence, state the values of \(a\)\(p\), and \(q\).

Solution

Convert the vertex form of the quadratic function into the general form first.

\(\begin{aligned} f(x)&=2\left(x+\dfrac{9}{4}\right)^2-\dfrac{1}{8} \\ &=2\left(x^2+\dfrac{9}{2}x+\dfrac{81}{16}\right)-\dfrac{1}{8}\\ &=2x^2+9x+10 \\ &=(2x+5)(x+2)\\ &=2\left(x+\dfrac{5}{2}\right)(x+2). \end{aligned}\)

Thus, the quadratic function in the intercept form for \(f(x)=2\left(x+\dfrac{9}{4}\right)^2-\dfrac{1}{8}\) can be expressed as \(f(x)=2\left(x+\dfrac{5}{2}\right)(x+2)\), where \(a=2\)\(p=-\dfrac{5}{2}\), and \(q=-2\).