Given two functions \(f(x)=2x\) and \(g(x)=x^2-5\).
Determine the following composite functions.
(a) \(fg\) (b) \(gf\) (c) \(f^2\) (d) \(g^2\)
(a)
\(\begin{aligned} fg(x)&=f[g(x)] \\ &=f(x^2-5) \\ &=2(x^2-5) \\ &=2x^2-10. \end{aligned}\)
\(\therefore fg(x)=2x^2-10.\)
(b)
\(\begin{aligned} gf(x)&=g[f(x)] \\ &=g(2x) \\ &=(2x)^2-5 \\ &=4x^2-5. \end{aligned}\)
\(\therefore gf(x)=4x^2-5.\)
(c)
\(\begin{aligned} f^2(x)&=f[f(x)] \\ &=f(2x) \\ &=2(2x) \\ &=4x .\end{aligned}\)
\(\therefore f^2(x)=4x.\)
(d)
\(\begin{aligned} g^2(x)&=g[g(x)] \\ &=g(x^2-5) \\ &=(x^2-5)^2-5 \\ &=x^4-10x^2+25-5\\ &=x^4-10x^2+20. \end{aligned}\)
\(\therefore g^2(x)=x^4-10x^2+20.\)
If \(f(x)=x-1\) and \(g(x)=x^2-3x+4\), find
(a) \(fg(2)\), (b) the values of \(x\) when \(fg(x)=7\).
\(\begin{aligned} fg(x)&=f[g(x)] \\ &=f(x^2-3x+4) \\ &=x^2-3x+4-1 \\ &=x^2-3x+3. \end{aligned}\)
Thus,
\(\begin{aligned} fg(2)&=(2)^2-3(2)+3 \\ &=1. \end{aligned}\)
\(\begin{aligned} fg(x)&=7 \\ x^2-3x+3&=7 \\ x^2-3x-4&=0 \\ (x+1)(x-4)&=0. \end{aligned}\)
\(\therefore x=-1,\quad x=4.\)
Given function \(f(x)=x-2\). Find the function \(g(x)\) if \(fg(x)=8x-7\).
\(\begin{aligned} f[g(x)]&=8x-7 \\ g(x)-2&=8x-7 \\ g(x)&=8x-7+2. \\ \end{aligned}\)
\(\therefore g(x)=8x-5.\)
Treat yourself with rewards for your hard work