\(a^2=b^2+c^2-2ab\cos{A}\)
\(b^2=a^2+c^2-2ab\cos{B}\)
\(c^2=a^2+b^2-2ab\cos{C}\)
In the diagram above, \(ABC\) is a scalene triangle.
Find the length of the \(AC\).
From diagram above, given:
\(AB=25\) cm, \(BC=23\) cm, \(\angle{B}=40^\circ\).
Apply the cosine rule to find the length of \(AC\):
\(\begin{aligned} AC^2&=AB^2+BC^2-2(AB)(BC) \cos 40^\circ \\\\ &=25^2+23^2-2(25)(23) \cos 40^\circ \\\\ &=273.05. \\\\ AC&=16.52 \text{ cm}. \end{aligned}\)
Assess yourself by staged practices