The formula involved is (two fixed point, ratio):
\(\dfrac{(x-x_1)^2+(y-y_1)^2}{(x-x_2)^2+(y-y_2)^2}=\dfrac{m^2}{n^2}\).
Substitute the value of the coordinates \(A(2,0)\) and \(B(4,-1)\) with ratio \(AP:PB=1:2\) into the formula:
\(\begin{aligned} \dfrac{AP}{PB}&=\dfrac{1}{2} \\ \dfrac{(x-2)^2+(y-0)^2}{(x-0)^2+(y+2)^2}&=\dfrac{1}{2^2}. \end{aligned}\)
Expand and simplify the resulting equation:
\(\begin{aligned} 4[(x-2)^2+y^2]&=x^2+(y+2)^2 \\ 4(x^2-4x+4)+4y^2&=x^2+(y^2+4y+4) \\ 4x^2-16x+16+4y^2&=x^2+y^2+4y+4 \\ 3x^2+3y^2-16x-4y+12&=0. \end{aligned}\)
The equation of the locus of a moving point \(P\) is:
\(3x^2+3y^2-16x-4y+12=0\).
|