|   | 
		
		
			| 4.1 | 
			 Scale Drawings | 
		
		
			|   | 
		
		
			
			
				
					
						|   | 
						Definition | 
						  | 
					 
					
						|   | 
						  | 
						  | 
					 
					
						|   | 
						
						 The drawing of an object with all measurements in the drawing proportional to the measurements of the object. 
						 | 
						  | 
					 
				
			 
			 | 
		
		
			|   | 
		
		
			| Interpret the scale of a scale drawing: | 
		
		
			|   | 
		
		
			| \(\begin{aligned}&\space\text{Scale}\\\\&=\dfrac{\text{Measurement of scale drawing}}{\text{Measurement of object}}\end{aligned}\) | 
		
		
			|   | 
		
		
			| 
			 The ratio is, 
			
				- Measurement of scale drawing : Measurement of object
 
			 
			 | 
		
		
			|   | 
		
		
			| 
			 Scale drawings in the form of ratio is, 
			\(1:n\), where \(n\) is the positive integer or fraction.  
			 | 
		
		
			|   | 
		
		
			| 
			 \(1:n\) means one unit on the scale drawing will represent \(n\) units on the object. 
			 | 
		
		
			|   | 
		
		
			| 
			
			 | 
		
		
			|   | 
		
		
			| 
			
			 | 
		
		
			|   | 
		
		
			| 
			
			 | 
		
		
			|   | 
		
		
			
			
				
					
						|   | 
						Example | 
						  | 
					 
					
						|   | 
						  | 
						  | 
					 
					
						|   | 
						
						 The diagram below shows object \(PQRS\) and scale drawing \(P'Q'R'S'\) drawn on a grid of equal squares. 
						  
						 | 
						  | 
					 
					
						|   | 
						  | 
						  | 
					 
					
						|   | 
						
						 State the scale used in the form of \(1:n\). 
						 | 
						  | 
					 
					
						|   | 
						  | 
						  | 
					 
					
						|   | 
						
						 \(\text{Scale}=\dfrac{P'Q'}{PQ}=\dfrac{2}{4}=\dfrac{1}{2}\) or, 
						\(\text{Scale}= \dfrac{P'S'}{PS}=\dfrac{3}{6}=\dfrac{1}{2}\). 
						 | 
						  | 
					 
					
						|   | 
						  | 
						  | 
					 
					
						|   | 
						Thus, \(\text{scale}=1:2\). | 
						  | 
					 
				
			 
			 | 
		
		
			|   | 
		
		
			
			
				
					
						|   | 
						Example | 
						  | 
					 
					
						|   | 
						  | 
						  | 
					 
					
						|   | 
						
						 A map is drawn to a scale of \(1 : 400 \space000\). 
						Calculate the actual length, in \(\text{km}\), of a river that is \(4\text { cm}\) long on the map. 
						 | 
						  | 
					 
					
						|   | 
						  | 
						  | 
					 
					
						|   | 
						
						 \(\begin{aligned} \dfrac {1 \text{ cm}}{400 \space 000 \text{ cm}}& = \dfrac{4 \text{ cm}}{ \text{Actual distance}} \end{aligned} \) 
						\(\begin{aligned} \\&\space\text{Actual distance}\\\\&=\dfrac{4 \times 400 \space000 \text{ cm}}{1\text{ cm}} \\\\&=1 \space 600 \space 000 \text{ cm} \\\\&=16 \text{ km}. \end{aligned}\) 
						Thus, the actual length of the river is \(16\text{ km}\). 
						 | 
						  | 
					 
				
			 
			 | 
		
		
			|   | 
		
		
			| Drawing the scale drawing of an object: | 
		
		
			|   | 
		
		
			| 
			 Three ways to draw the scale drawing of an object are, 
			
				- Use grid paper of the same size for different scales.
 
				- Use grid paper of different sizes.
 
				- Draw on a blank paper according to the given scale.
 
			 
			 | 
		
		
			|   | 
		
		
			
			
				
					
						|   | 
						Example | 
						  | 
					 
					
						|   | 
						  | 
						  | 
					 
					
						|   | 
						
						 Draw the scale drawing of shape \(PQRS\) on a grid of equal squares using a scale of \(1 :\dfrac{1 }{2}\). 
						  
						 | 
						  | 
					 
					
						|   | 
						  | 
						  | 
					 
					
						|   | 
						
						 The scale given is \(1 :\dfrac{1 }{2}\). 
						Therefore, every side of the scale drawing is two times longer than the length of the sides of object \(PQRS\). 
						  
						 | 
						  | 
					 
				
			 
			 | 
		
		
			|   | 
		
		
			| Problem solving: | 
		
		
			|   | 
		
		
			
			
				
					
						|   | 
						Example | 
						  | 
					 
					
						|   | 
						  | 
						  | 
					 
					
						|   | 
						
						 The distance on a map between Kuantan and Gombak is \(4 \text { cm}\). 
						a) If the scale used to draw map is \(1\text { cm}: 50 \text{ km}\), calculate the actual distance, in \(\text{km}\), between Kuantan and Gombak. 
						b) Mr. Danish wants to visit Kuantan. 
						If he plans to drive to Kuantan at a speed of \(100\text{ km h}^{-1}\), calculate the time taken to drive from Gombak to Kuantan in hours. 
						 | 
						  | 
					 
					
						|   | 
						  | 
						  | 
					 
					
						|   | 
						
						 a) Solution: 
						\(\begin{aligned} \text{Scale}&=\dfrac{\text{Drawing distance}}{\text{Actual distance}} \\\\\dfrac{1}{50 \text{ km}}&=\dfrac{4\text{ cm}}{\text{Actual distance}} \\\\\text{Actual distance}&= \dfrac{4\text { cm}(50 \text{ km})}{1\text{ cm}} \\\\&= 200 \text{ km}. \end{aligned}\) 
						 | 
						  | 
					 
					
						|   | 
						  | 
						  | 
					 
					
						|   | 
						
						 b) Solution: 
						\(\begin{aligned} \text{Time}&=\dfrac{\text{Distance}}{\text{Speed}}\\\\&= \dfrac {200 \text { km }} {100 \text{ km h}^{-1}} \\\\&= 2{\text{ hours}}. \end{aligned}\) 
						 | 
						  | 
					 
				
			 
			 | 
		
		
			|   |