Addition and Subtraction of Vectors

8.2 Addition and Subtraction of Vectors
 
The image is a flowchart with two main sections. The top section, in a dark blue box, is titled 'ADDITION AND SUBTRACTION OF VECTORS.' An arrow labeled 'Produce' points downward to the bottom section. The bottom section, in a light blue box, is titled 'RESULTANT VECTOR' and includes a description: 'A resultant vector is the combination of two or more single vectors.' The logo 'Pandai' is at the top of the image.
 
Addition and Subtraction of Parallel Vector
Addition of Two Parallel Vector

The addition of two parallel vectors \(\utilde{a}\) and \(\utilde{b}\) can be combined to produce a resultant vector represented as \(\utilde{a}+\utilde{b}\).

For example:

Kalkulator yang menunjukkan dua persamaan yang berbeza, mencontohkan proses penambahan vektor a dan vektor b dalam matematik.
Subtraction of Two Parallel Vector

The subtraction of vector \(\utilde{b}\) from vector \(\utilde{a}\) is the sum of vector \(\utilde{b}\) and negative vector \(\utilde{b}\), that is \(\utilde{a}-\utilde{b}=\utilde{a}+(-\utilde{b})\).

For example:

Graf yang menggambarkan pelbagai jenis persamaan, memaparkan contoh penolakan antara vektor a dan vektor b.
 
Addition and Subtraction of Non-Parallel Vector
Triangle Law
 
A triangle illustrating the addition of non-parallel vectors a and b, featuring two sides and a central point.
 
Parallelogram Law
 
A triangle with two sides and a point at the bottom, illustrating the addition of non-parallel vectors in parallelogram form.
 
Polygon Law
 
Diagram of a trapezium with labeled sides, illustrating the addition of non-parallel vectors a, b, and c in polygon form.
 
 
Example \(1\)
Question

It is given that,

\(\overrightarrow{CD}=3\utilde{r}\),
\(\overrightarrow{EF}=5\utilde{r}\),
\(\overrightarrow{FG}=\utilde{r}\).

If \(|\utilde{r}|=3\) units, find the magnitude of the following expression:

\(\begin{aligned} 2\overrightarrow{CD}+\overrightarrow{EF}-3\overrightarrow{FG} \end{aligned}\).

Solution

Express the expression in term of \(\utilde{r}\):

\(\begin{aligned} &2\overrightarrow{CD}+\overrightarrow{EF}-3\overrightarrow{FG} \\\\ &=2(3\utilde{r})+5 \utilde{r}-3(\utilde{r}) \\\\ &=6\utilde{r}+5 \utilde{r}-3\utilde{r}. \end{aligned}\)


Since \(|\utilde{r}|=3\) units, hence:

\(\begin{aligned} &|6\utilde{r}+5 \utilde{r}-3\utilde{r}|\\\\ &=|8\utilde{r}|\\\\&=8|\utilde{r}|\\\\ &=8(3) \\\\ &=24 \text{ units}. \end{aligned}\)

 
Example \(2\)
Question

Two forces \(\bold{F}_1=50 \text{ N}\) and \(\bold{F}_2=30 \text{ N}\) are acting on a moving object.

Determine the magnitude of the force and the direction of the movement of the object if,

\(\bold{F}_1\) and \(\bold{F}_2\) are in the opposite direction.

Solution

If \(\bold{F}_1\) and \(\bold{F}_2\) are in the opposite direction, then:

A square with two red circles, illustrating opposing forces F1 and F2 acting on the square object.

Magnitude:

\(\begin{aligned} \bold{F}_1+(-\bold{F}_2)&=50+(-30)\\\\&=50-30 \\\\ &=20\text{ N}. \end{aligned}\)

The magnitude of the force acted on the object is \(20\text{ N}\) in the same dircetion as \(\bold{F}_1\).

 

Addition and Subtraction of Vectors

8.2 Addition and Subtraction of Vectors
 
The image is a flowchart with two main sections. The top section, in a dark blue box, is titled 'ADDITION AND SUBTRACTION OF VECTORS.' An arrow labeled 'Produce' points downward to the bottom section. The bottom section, in a light blue box, is titled 'RESULTANT VECTOR' and includes a description: 'A resultant vector is the combination of two or more single vectors.' The logo 'Pandai' is at the top of the image.
 
Addition and Subtraction of Parallel Vector
Addition of Two Parallel Vector

The addition of two parallel vectors \(\utilde{a}\) and \(\utilde{b}\) can be combined to produce a resultant vector represented as \(\utilde{a}+\utilde{b}\).

For example:

Kalkulator yang menunjukkan dua persamaan yang berbeza, mencontohkan proses penambahan vektor a dan vektor b dalam matematik.
Subtraction of Two Parallel Vector

The subtraction of vector \(\utilde{b}\) from vector \(\utilde{a}\) is the sum of vector \(\utilde{b}\) and negative vector \(\utilde{b}\), that is \(\utilde{a}-\utilde{b}=\utilde{a}+(-\utilde{b})\).

For example:

Graf yang menggambarkan pelbagai jenis persamaan, memaparkan contoh penolakan antara vektor a dan vektor b.
 
Addition and Subtraction of Non-Parallel Vector
Triangle Law
 
A triangle illustrating the addition of non-parallel vectors a and b, featuring two sides and a central point.
 
Parallelogram Law
 
A triangle with two sides and a point at the bottom, illustrating the addition of non-parallel vectors in parallelogram form.
 
Polygon Law
 
Diagram of a trapezium with labeled sides, illustrating the addition of non-parallel vectors a, b, and c in polygon form.
 
 
Example \(1\)
Question

It is given that,

\(\overrightarrow{CD}=3\utilde{r}\),
\(\overrightarrow{EF}=5\utilde{r}\),
\(\overrightarrow{FG}=\utilde{r}\).

If \(|\utilde{r}|=3\) units, find the magnitude of the following expression:

\(\begin{aligned} 2\overrightarrow{CD}+\overrightarrow{EF}-3\overrightarrow{FG} \end{aligned}\).

Solution

Express the expression in term of \(\utilde{r}\):

\(\begin{aligned} &2\overrightarrow{CD}+\overrightarrow{EF}-3\overrightarrow{FG} \\\\ &=2(3\utilde{r})+5 \utilde{r}-3(\utilde{r}) \\\\ &=6\utilde{r}+5 \utilde{r}-3\utilde{r}. \end{aligned}\)


Since \(|\utilde{r}|=3\) units, hence:

\(\begin{aligned} &|6\utilde{r}+5 \utilde{r}-3\utilde{r}|\\\\ &=|8\utilde{r}|\\\\&=8|\utilde{r}|\\\\ &=8(3) \\\\ &=24 \text{ units}. \end{aligned}\)

 
Example \(2\)
Question

Two forces \(\bold{F}_1=50 \text{ N}\) and \(\bold{F}_2=30 \text{ N}\) are acting on a moving object.

Determine the magnitude of the force and the direction of the movement of the object if,

\(\bold{F}_1\) and \(\bold{F}_2\) are in the opposite direction.

Solution

If \(\bold{F}_1\) and \(\bold{F}_2\) are in the opposite direction, then:

A square with two red circles, illustrating opposing forces F1 and F2 acting on the square object.

Magnitude:

\(\begin{aligned} \bold{F}_1+(-\bold{F}_2)&=50+(-30)\\\\&=50-30 \\\\ &=20\text{ N}. \end{aligned}\)

The magnitude of the force acted on the object is \(20\text{ N}\) in the same dircetion as \(\bold{F}_1\).