The numbers that can be expressed in fractional form \(\dfrac{a}{b}\) where \(a\) and \(b\) are integers and \(b \ne 0\).
The numbers that cannot be expressed in fractional form.
\(\sqrt{a}\times \sqrt{b}=\sqrt{a\times b}\)
\(\dfrac{\sqrt{a}}{\sqrt{b}}=\sqrt{\dfrac{a}{b}}\)
\(k\times \sqrt{a}=\sqrt{k^2\times a}\) (for \(k\) is a rational number)
\((\sqrt{a})^2=a\)
Solve \(x-4\sqrt{x}+3=0\).
Use the factorisation method.
\(\begin{aligned} x-4\sqrt{x}+3&=0 \\ (\sqrt{x}-3)(\sqrt{x}-1)&=0 \end{aligned}\)
\(\begin{aligned} \sqrt{x}-3&=0 \\ \sqrt{x}&=3 \\ (\sqrt{x})^2&=3^2 \\ x&=9 \end{aligned}\) or \(\begin{aligned} \sqrt{x}-1&=0 \\ \sqrt{x}&=1 \\ (\sqrt{x})^2&=1^2 \\ x&=1.\end{aligned}\)
Thus, \(x=9\) and \(x=1\) are the solutions for the equation.
Challenge your friend in timed Quiz battle