| Union of Sets | 
					 
					
						
						
							- The union of sets \(P\) and \(Q\) is written using the symbol \(\cup\).
 
							- \(P \cup Q\) represents all the elements in set \(P\) or set \(Q\) or in both sets \(P\) and \(Q\).
 
						 
						 | 
					 
				
			 
			
			
				
					
						| The Union of Two or More Sets Using The Venn Diagram | 
					 
					
						  | 
					 
					
						| 
						
						  
						It is given that set \(P=\{\text{factors of 24}\}\), set \(Q=\{\text{multiples of 3 which are less than 20}\}\) and set \(R=\{\text{multiples of 4 which are less than 20}\}\). 
						List all the elements of \(P \cup Q\), \(P \cup R\), \(Q \cup R\) and \(P\cup Q \cup R\). 
						
							
								
									| \(P \cup Q\) | 
									\(P=\{1,2,3,4,6,8,12,24\}\) 
									\(Q=\{3,6,9,12,15,18\}\) 
									\(P\,\cup Q=\{1,2,3,4,6,8,9,12,15,18,24\}\) | 
								 
								
									| \(P \cup R\) | 
									\(P=\{1,2,3,4,6,8,12,24\}\) 
									\(R=\{4,8,12,16\}\) 
									\(P\,\cup R=\{1,2,3,4,6,8,12,16,24\}\) | 
								 
								
									| \(Q \cup R\) | 
									\(Q=\{3,6,9,12,15,18\}\) 
									\(R=\{4,8,12,16\}\) 
									\(Q\,\cup R=\{3,4,6,8,9,12,15,16,18\}\) | 
								 
								
									| \(P\cup Q \cup R\) | 
									\(P=\{1,2,3,4,6,8,12,24\}\) 
									\(Q=\{3,6,9,12,15,18\}\) 
									\(R=\{4,8,12,16\}\) 
									\(P\cup Q \cup R=\{1,2,3,4,6,8,9,12,15,16,18,24\}\) | 
								 
							
						 
						 
						Draw a Venn diagram to represent sets \(P\), \(Q\) and \(R\), and shade the regions that represent \(P \cup Q\) and \(P\cup Q \cup R\). 
						
							
								
									| \(P \cup Q\) | 
									  | 
								 
								
									| \(P \cup Q\cup R\) | 
									  | 
								 
							
						 
						  
						 | 
					 
				
			 
			  
			
				
					
						| The Complement of The Union of Sets | 
					 
					
						
						
							- It is written as \((A \cup B)'\).
 
							- \((A \cup B)'\) read as " the complement of the union of sets of sets \(A\) and \(B\) ".
 
							- \((A \cup B)'\) refers to all the elements not in set \(A\) and set \(B\).
 
						 
						 | 
					 
					
						| 
						
						  
						Given the universal set, \(\xi=\{x:x\text{ is an integer},50\le x\le60\}\), set \(G=\{x:x\text{ is a prime number}\}\), set \(H=\{x:x\text{ is a multiple of 4}\}\) and set \(I=\{x:x\text{ is a multiple of 5}\}\), list all the elements and state the number of \((G\,\cup H)'\), \((G\,\cup I)'\), \((H\,\cup I)'\) and \((G\,\cup H\,\cup I)'\). 
						Solution: 
						\(\xi=\{50,51,52,53,54,55,56,57,58,59,60\}\) 
						\(G=\{53,59\}\) 
						\(H=\{52,56,60\}\) 
						\(I=\{50,55,60\}\) 
						
							
								
									| \(n(G\,\cup H)'\) | 
									\((G\,\cup H)=\{52,53,56,59,60\}\) 
									\((G\,\cup H)'=\{50,51,54,55,57,58\}\) 
									\(n(G\,\cup H)'=6\) | 
								 
								
									| \(n(G\,\cup I)'\) | 
									\((G\,\cup I)=\{50,53,55,59,60\}\) 
									\((G\,\cup I)'=\{51,52,54,56,57,58\}\) 
									\(n(G\,\cup I)'=6\) | 
								 
								
									| \(n(H\,\cup I)'\) | 
									\((H\,\cup I)=\{50,52,55,56,60\}\) 
									\((H\,\cup I)'=\{51,53,54,57,58,59\}\) 
									\(n(H\,\cup I)'=6\) | 
								 
								
									| \(n(G\,\cup H\,\cup I)'\) | 
									\((G\,\cup H\,\cup I)=\{50,52,53,55,56,59,60\}\) 
									\((G\,\cup H\,\cup I)'=\{51,54,57,58\}\) 
									\(n(G\,\cup H\,\cup I)'=4\) | 
								 
							
						 
						 | 
					 
				
			 
			  
			
			
				
					
						| The Complements of The Unions of Two or More Sets Using Venn Diagrams | 
					 
					
						  | 
					 
					
						| 
						
						  
						Three private travel agencies, \(A,B\) and  \(C\) are chosen to organise the tourism exhibitions \(2020\) in Sarawak. Several divisions in Sarawak are chosen to hold the exhibition as follows: 
						 
						\(\begin{aligned} \xi= \{&\text{Kapit}, \text{Miri}, \text{Bintulu},\text{Sibu}, \text{Limbang}, \text{Mukah}, \text{Kuching}, \text{Betong} \} \end{aligned}\) 
						\(\begin{aligned} A=\{&\text{Miri}, \text{Sibu}, \text{Kuching}, \text{Betong}\} \end{aligned}\) 
						\(\begin{aligned} B=\{&\text{Miri}, \text{Sibu}, \text{Kapit}, \text{Limbang}\} \end{aligned}\) 
						\(\begin{aligned} C=\{&\text{Miri}, \text{Betong}, \text{Kapit}, \text{Mukah}\} \end{aligned}\) 
						List all the elements and draw a Venn diagram to represent sets \(A\), \(B\) and \(C\), and shade the region that represents each of \(( A \cup B) '\), \(( B \cup C) '\) and \(( A \cup B \,\cup C) '\). 
						Solution: 
						
							
								
									| \(( A \cup B) '\) | 
								 
								
									\(A\,\cup B=\{\text{Kapit, Miri, Sibu, Limbang, Kuching, Betong\}}\) 
									\((A\,\cup B)'=\{\text{Mukah, Bintulu\}}\) | 
								 
								
									  | 
								 
							
						 
						
						
							
								
									| \(( B \cup C) '\) | 
								 
								
									\(B\,\cup C=\{\text{Kapit, Miri, Sibu, Limbang, Betong, Mukah\}}\) 
									\((B\,\cup C)'=\{\text{Kuching, Bintulu\}}\) | 
								 
								
									  | 
								 
							
						 
						
						
							
								
									| \(( A \cup B \,\cup C) '\) | 
								 
								
									\(A\cup B\,\cup C=\{\text{Kapit, Miri, Sibu, Limbang, Mukah, Betong, Kuching\}}\) 
									\(( A \cup B \,\cup C) '=\{\text{Bintulu}\}\) | 
								 
								
									  | 
								 
							
						 
						  
						 | 
					 
					
					 
				
			 
			 |