Polynomials

Polynomials

Share this post

1. Definition of polynomial

Polynomial is a function of the form

 

\(p(x)=a_{n}x^n+a_{n-1}x^{n-1}+…a_{1}x^1+a_{0}x^0\)

 

In the above expression x is the independent variable. \(a_{n}, a_{n-1}, …, a_{1}\) and  \(a_{0}\)  are the coefficients where  \(a_{n}\)  is known as the leading coefficient

The degree of the polynomial p(x) above is given by n where n is a non-negative integer. Note that  \(1\over x\)  is not a polynomial because the power is -1.

Some polynomials have special names. Polynomial with degree n=0,

 

\(p(x)=a_{0}\)

 

is known as a constant function. Polynomial with degree n=1,

 

\(p(x)=a_{1}x+a_{0}\)

 

is known as a linear function. Some other names are shown below.

 

Degree, n

Name

0

Constant function

1

Linear function

2

Quadratic function

3

Cubic function

4

Quartic function

5

Quintic function

   

 

When a polynomial is written starting with the term of the highest degree, the terms are said to be in a descending order. When a polynomial is written starting with the term of the lowest degree, the terms are said to be in an ascending order.

For instance, 

 

\(p(x)=3x^4+x^3+2x+7\)

 

is a fourth degree (n=4) polynomial in descending order. The leading coefficient is  \(a_{n}=3\).

Also,

 

\(p(x)=5+3x^2-x^3\)

 

is a third degree (

n=3) polynomial in ascending order. The leading coefficient is  \(a_{n}=-1\).

 

2. Addition and subtraction

To add or subtract polynomials, you add or subtract the coefficients of the same power. \

Example

Given \(p(x)=x^3+2x+7 \text{ and } q(x)=5+3x^2-x^3\),

\(p(x)+q(x)=x^3+2x+7 +5+3x^2-x^3\)

                    \(=1+(-1)x^3+(0+3)x^2+(2+0)^x+(7+5)\)

                    \(=3x^2+2x+12\)

 

\(p(x)-q(x)=(x^3+2x+7) -(5+3x^2-x^3)\)

                    \(=(1-(-1)x^3+(0-3)x^2+(2-0)x+(7-5)\)

                     \(=2x^3-3x^2+2x+2\)

 

3. Multiplication

Multiplying with a constant

To multiply a polynomial with a constant, you simply multiply each term in the polynomial with that constant.

Example 

Given  \(p(x)=3x^4-x^3+2x+7\),  find 5p(x).

\(5p(x)=5×(3x^4-x^3+2x+7)\)

          \(=15x^4-5x^3+10x+35\)

 

Example 

Given  \(p(x)=x^2-2x+3\)  and \(q(x)=x^2+x+1\),  find p(x)+3q(x).

\(p(x)+3q(x)=x^2-2x+3+3(x^2+x+1)\)

                     \(=x^2-2x+3+3x^2+3x+3\)

                     \(=4x^2+x+6\)

 

Multiplying two polynomials

To multiply two polynomials, you multiply each term in one polynomial with all the terms in the other polynomial.

Example 

Given  \(p(x)=x^3+5 \text{ and } q(x)=3x^2-x\),  find  \(p(x)×q(x)\).

\(p(x)×q(x)=x^3+5(3x^2-x)\)

                   \(=x^3(3x^2-x)+5(3x^2-x)\)

                   \(=3x^5-x^4+15x^2-5x\)

 

 

Tag Secondary school Degree Polynomials

Prior knowledge

1.  What is a polynomial?
2.  How do you perform addition, subtraction and multiplication of polynomials?

1. 

The degree of the polynomial  \(1-2x+3x^5\)  is:

2. 

The leading coefficient of the polynomial  \(1-2x+3x^5\)  is:

3. 

Which polynomial is in descending order?

4. 

Why is sqrt(x) not a polynomial?

5. 

Given p(x) = 2x^3 - x+1 and qx=-2x^2 + x^3, find p(x)+q(x).

Reflection

1.  What are the degree and leading coefficients of a polynomial?
2.  How do you add or subtract two polynomials?
3.  How do you multiply two polynomials?
Loading...
Load lesson
Slot Gacor Link Gacor Slot Gacor Hari Ini Link Gacor Slot Gacor Slot Gacor Slot Thailand Slot Gacor Link Gacor Slot Gacor Link Gacor