Polynomials

Polynomials

Share this post

1. Definition of polynomial

Polynomial is a function of the form

 

\(p(x)=a_{n}x^n+a_{n-1}x^{n-1}+…a_{1}x^1+a_{0}x^0\)

 

In the above expression x is the independent variable. \(a_{n}, a_{n-1}, …, a_{1}\) and  \(a_{0}\)  are the coefficients where  \(a_{n}\)  is known as the leading coefficient

The degree of the polynomial p(x) above is given by n where n is a non-negative integer. Note that  \(1\over x\)  is not a polynomial because the power is -1.

Some polynomials have special names. Polynomial with degree n=0,

 

\(p(x)=a_{0}\)

 

is known as a constant function. Polynomial with degree n=1,

 

\(p(x)=a_{1}x+a_{0}\)

 

is known as a linear function. Some other names are shown below.

 

Degree, n

Name

0

Constant function

1

Linear function

2

Quadratic function

3

Cubic function

4

Quartic function

5

Quintic function

   

 

When a polynomial is written starting with the term of the highest degree, the terms are said to be in a descending order. When a polynomial is written starting with the term of the lowest degree, the terms are said to be in an ascending order.

For instance, 

 

\(p(x)=3x^4+x^3+2x+7\)

 

is a fourth degree (n=4) polynomial in descending order. The leading coefficient is  \(a_{n}=3\).

Also,

 

\(p(x)=5+3x^2-x^3\)

 

is a third degree (

n=3) polynomial in ascending order. The leading coefficient is  \(a_{n}=-1\).

 

2. Addition and subtraction

To add or subtract polynomials, you add or subtract the coefficients of the same power. \

Example

Given \(p(x)=x^3+2x+7 \text{ and } q(x)=5+3x^2-x^3\),

\(p(x)+q(x)=x^3+2x+7 +5+3x^2-x^3\)

                    \(=1+(-1)x^3+(0+3)x^2+(2+0)^x+(7+5)\)

                    \(=3x^2+2x+12\)

 

\(p(x)-q(x)=(x^3+2x+7) -(5+3x^2-x^3)\)

                    \(=(1-(-1)x^3+(0-3)x^2+(2-0)x+(7-5)\)

                     \(=2x^3-3x^2+2x+2\)

 

3. Multiplication

Multiplying with a constant

To multiply a polynomial with a constant, you simply multiply each term in the polynomial with that constant.

Example 

Given  \(p(x)=3x^4-x^3+2x+7\),  find 5p(x).

\(5p(x)=5×(3x^4-x^3+2x+7)\)

          \(=15x^4-5x^3+10x+35\)

 

Example 

Given  \(p(x)=x^2-2x+3\)  and \(q(x)=x^2+x+1\),  find p(x)+3q(x).

\(p(x)+3q(x)=x^2-2x+3+3(x^2+x+1)\)

                     \(=x^2-2x+3+3x^2+3x+3\)

                     \(=4x^2+x+6\)

 

Multiplying two polynomials

To multiply two polynomials, you multiply each term in one polynomial with all the terms in the other polynomial.

Example 

Given  \(p(x)=x^3+5 \text{ and } q(x)=3x^2-x\),  find  \(p(x)×q(x)\).

\(p(x)×q(x)=x^3+5(3x^2-x)\)

                   \(=x^3(3x^2-x)+5(3x^2-x)\)

                   \(=3x^5-x^4+15x^2-5x\)

 

 

Tag Secondary school Degree Polynomials

Prior knowledge

1.  What is a polynomial?
2.  How do you perform addition, subtraction and multiplication of polynomials?

1. 

The degree of the polynomial  \(1-2x+3x^5\)  is:

2. 

The leading coefficient of the polynomial  \(1-2x+3x^5\)  is:

3. 

Which polynomial is in descending order?

4. 

Why is sqrt(x) not a polynomial?

5. 

Given p(x) = 2x^3 - x+1 and qx=-2x^2 + x^3, find p(x)+q(x).

Reflection

1.  What are the degree and leading coefficients of a polynomial?
2.  How do you add or subtract two polynomials?
3.  How do you multiply two polynomials?
Loading...
Load lesson