Indices

Indices

Share this post

1. Definition of indices

Index (singular) or indices (plural) is the power or exponent which is raised to a number or a variable. 

For example, in  \(a_m\) , the variable is a and the index is m. In  \(2^3\) , the number is 2 and the index is 3. 

\(a_m\)  means a is multiplied by itself m number of times. Similarly,  \(2^3\)  means the number 2 is multiplied by itself 3 times.


 

\(2^3=2×2×2=8\)

\(5^4=5×5×5×5=625\)

 

Take note that negative indices reduces the value of the number. For example,

 

 

 

2. Rules of indices

\(a_m \times \text{ }a_m=a^{m+n}\)

\(a_m \div a_m=a_{m-n}\)

\((a^m)^n=a^{mn}\)

\((ab)^m=a^mb^m\)

\(a^{-m}={1\over{a^m}}\)

\({a^{m \over n}}=(\sqrt [n] {a})^m\)

\(a^0=1\)

 

Example

Use indices to write the following in the form  \(a^m\).

 

1.  \(4×2=2^2 2^1=2^{2+1}=2^3\)

2.  \(3×27=3^1 3^3=3^{1+3}=3^4\)

3.  \(2^{3n} \times 2^{5n}=2^{3n+5n}=2^{8n}\)

4.  \(3^{4n} \div 3^{5n}=3^{4n-5n}=3^{-n}={1 \over 3^n}\)

5.  \(a^{1 \over 2}(9a)^{1 \over 2}=a^{1\over 2} \times 9^{1 \over 2}a^{1 \over 2}\)

     \(=a^{1 \over 2}(3a^{1 \over 2})\)

     \(=3a^{{1 \over 2} + {1 \over 2}}\)

     \(=3a\)

 

Take note parentheses plays an important role. For example,  \(-2^2\)  =-4 but   \(-2^2\)=4. Also,   \(ab^2\)=a×b×b but  \(ab^2\)=a×a×b×b.

 

Example

Simplify the following.

\((a^4b^3c^2) \times (ab^5c^2) \)

      \(=a^{4+1}b^{3+5}c^{2+2}\)

      \(=a^5b^8c^4\)

 

\(x^3y^2z^3 \div x^2y^5\)

\(=x^{3-2}y^{2-5}z^{3-0}\)

\(=x^1y^{-3}z^3 \)

\(={xz^3 \over y^3}\)

 

1. Solving equations

You can use the following steps to solve equations involving indices:

  • express both sides of the equation in the same base
  • equate the indices and solve 

 

Example

1. Solve for x the equation  \(4^x=64.\)

           \(4^x=4^3\)

           \(x=3\)

 

2. Solve for x the equation  \((2^{3x})(2^{x-1})=32\)

           \(2^{3x+x-1}=2^5\)

           \(2^{4x-1}=2^5\)

           \(4x-1=5\)

           \(4x=6\)

           \(x={3 \over 2}\)

 

3. Solve for x the equation  \({(16^x)(16^x) \over 16^x}=8\).

           \({16^{2x} \over 16^x}=8\)

           \(16^{2x-x}=8\)

           \(16^x=8\)

           \((2^{4x})=2^3\)

           \(4x=3\)

           \(x={3 \over 4}\)

 

Tag Secondary school Indices

Prior knowledge

1.  What are indices?
2.  What are the law of indices?
3.  How do you use indices to solve mathematics equations?

1. 

\(37=\)

2. 

Use indices to write 100×1000 in the form a^m.

3. 

(8a^-9)^1/3 =

4. 

(2^n x 4^n x 8^n)^1/n =

5. 

Solve for x the equation (5^2x) (125^(5x-1))= 25.

Reflection

1.  What are the rules of indices?
Loading...
Load lesson