Indices

Indices

Share this post

1. Definition of indices

Index (singular) or indices (plural) is the power or exponent which is raised to a number or a variable. 

For example, in  \(a_m\) , the variable is a and the index is m. In  \(2^3\) , the number is 2 and the index is 3. 

\(a_m\)  means a is multiplied by itself m number of times. Similarly,  \(2^3\)  means the number 2 is multiplied by itself 3 times.


 

\(2^3=2×2×2=8\)

\(5^4=5×5×5×5=625\)

 

Take note that negative indices reduces the value of the number. For example,

 

 

 

2. Rules of indices

\(a_m \times \text{ }a_m=a^{m+n}\)

\(a_m \div a_m=a_{m-n}\)

\((a^m)^n=a^{mn}\)

\((ab)^m=a^mb^m\)

\(a^{-m}={1\over{a^m}}\)

\({a^{m \over n}}=(\sqrt [n] {a})^m\)

\(a^0=1\)

 

Example

Use indices to write the following in the form  \(a^m\).

 

1.  \(4×2=2^2 2^1=2^{2+1}=2^3\)

2.  \(3×27=3^1 3^3=3^{1+3}=3^4\)

3.  \(2^{3n} \times 2^{5n}=2^{3n+5n}=2^{8n}\)

4.  \(3^{4n} \div 3^{5n}=3^{4n-5n}=3^{-n}={1 \over 3^n}\)

5.  \(a^{1 \over 2}(9a)^{1 \over 2}=a^{1\over 2} \times 9^{1 \over 2}a^{1 \over 2}\)

     \(=a^{1 \over 2}(3a^{1 \over 2})\)

     \(=3a^{{1 \over 2} + {1 \over 2}}\)

     \(=3a\)

 

Take note parentheses plays an important role. For example,  \(-2^2\)  =-4 but   \(-2^2\)=4. Also,   \(ab^2\)=a×b×b but  \(ab^2\)=a×a×b×b.

 

Example

Simplify the following.

\((a^4b^3c^2) \times (ab^5c^2) \)

      \(=a^{4+1}b^{3+5}c^{2+2}\)

      \(=a^5b^8c^4\)

 

\(x^3y^2z^3 \div x^2y^5\)

\(=x^{3-2}y^{2-5}z^{3-0}\)

\(=x^1y^{-3}z^3 \)

\(={xz^3 \over y^3}\)

 

1. Solving equations

You can use the following steps to solve equations involving indices:

  • express both sides of the equation in the same base
  • equate the indices and solve 

 

Example

1. Solve for x the equation  \(4^x=64.\)

           \(4^x=4^3\)

           \(x=3\)

 

2. Solve for x the equation  \((2^{3x})(2^{x-1})=32\)

           \(2^{3x+x-1}=2^5\)

           \(2^{4x-1}=2^5\)

           \(4x-1=5\)

           \(4x=6\)

           \(x={3 \over 2}\)

 

3. Solve for x the equation  \({(16^x)(16^x) \over 16^x}=8\).

           \({16^{2x} \over 16^x}=8\)

           \(16^{2x-x}=8\)

           \(16^x=8\)

           \((2^{4x})=2^3\)

           \(4x=3\)

           \(x={3 \over 4}\)

 

Tag Secondary school Indices

Prior knowledge

1.  What are indices?
2.  What are the law of indices?
3.  How do you use indices to solve mathematics equations?

1. 

\(37=\)

2. 

Use indices to write 100×1000 in the form a^m.

3. 

(8a^-9)^1/3 =

4. 

(2^n x 4^n x 8^n)^1/n =

5. 

Solve for x the equation (5^2x) (125^(5x-1))= 25.

Reflection

1.  What are the rules of indices?
Loading...
Load lesson
Slot Gacor Link Gacor Slot Gacor Hari Ini Link Gacor Slot Gacor Slot Gacor Slot Thailand Slot Gacor Link Gacor Slot Gacor Link Gacor