Skema Jawapan SPM Matematik Tambahan Kertas 1 - Set 1

SULIT

JABATAN PEPERIKSAAN
PANDAI EDUCATION

SIJIL PELAJARAN MALAYSIA 2024

MATEMATIK TAMBAHAN
Kertas 1 (Set 1)
3472/1

 

SKEMA JAWAPAN

 
 
SULIT 2 3472/1
 
  Skema Jawapan Sub Markah Jumlah Markah
1.

(a)

\(\begin{aligned} ck+d&=0 \\ ck&=-d \\ k&=-\dfrac{d}{c} \end{aligned}\)

 

Katakan \(g^{-1}(x)=y\)

\(\begin{aligned} g(y)&=x\\ \dfrac{ay+b}{cy+d}&=x \\ ay+b&=xcy+xd \\ y&=\dfrac{dx-b}{-cx+a} \end{aligned}\)

 

\(g^{-1}(x)=\dfrac{-dx+b}{cx-a}\)\(x\ne \dfrac{a}{c}\)

 

 

1m

 

 

 

 

1m

 

1m

6m

(b)

(i)

\(g^{-1}(x)=\dfrac{3x-4}{2x-7}\)\(x\ne \dfrac{7}{2}\)

 

(ii)

\(g^{-1}(x)=\dfrac{5x-3}{x-2}\)\(x\ne 2\)

1m

 

1m

(c)

\(g(x)=g^{-1}(x)\) jika \(a=-d\).

1m

 
  Skema Jawapan Sub Markah Jumlah Markah
2.
 

\(\begin{aligned} 5&\lt 2x^2+x+4 \\ 2x^2+x-1&\gt 0 \\ (2x-1)(x+1)&\gt 0 \\ \end{aligned}\)

\(x\lt -1\)\(x\gt\dfrac{1}{2}\)

 

\(\begin{aligned} 2x^2+x-6&\lt 0\\ (2x-3)(x+2)&\lt0 \end{aligned}\)

\(-2\lt x\lt \dfrac{3}{2}\)

 

\(x\lt -1\)\(x\gt \dfrac{1}{2}\) ATAU \(-2\lt x\lt \dfrac{3}{2}\)

 

\(-2\lt x \lt -1\) ATAU \(\dfrac{1}{2}\lt x \lt \dfrac{3}{2}\)

 

 

 

1m

 

 

1m

 

 

1m

1m

4m
 
 
SULIT 3 3472/1
 
  Skema Jawapan Sub Markah Jumlah Markah
3.

(a)

Bukan, kerana terdapat persamaan yang mempunyai hasil darab dua pemboleh ubah.

1m

5m

(b)

\(\begin{aligned} x-2y&=4 \quad \cdots\boxed{1} \\ 2x-3y+2z&=-2 \quad \cdots\boxed{2} \\ 4x-7y+2z&=6 \quad\cdots\boxed{3} \end{aligned}\)

Dari \(\boxed{1}\),

\(x=4+2y\quad\cdots\boxed{4}\)

Gantikan \(\boxed{4}\) ke dalam \(\boxed{2}\),

\(\begin{aligned} 2(4+2y)-3y+2z&=-2\\ 8+4y-3y+2z&=-2\\ 8+y+2z&=-2\\ y+2z&=-10\quad\cdots\boxed{5} \end{aligned}\)

 

Gantikan \(\boxed{4}\) ke dalam \(\boxed{3}\),

\(\begin{aligned} 4(4+2y)-7y+2z&=6\\ 16+8y-7y+2z&=6\\ 16+y+2z&=6\\ y+2z&=-10\quad\cdots\boxed{6} \end{aligned}\)

 

\(\boxed{5}-\boxed{6}\),

\(0=0\)

 

Maka, sistem persamaan linear ini mempunyai penyelesaian yang tidak terhingga kerana \(0=0\).

 

 

 

 

 

 

 

 

1m

 

 

 

 

1m

 

 

1m

1m

 
 
SULIT 4 3472/1
 
  Skema Jawapan Sub Markah Jumlah Markah
4.

(a)

\(\begin{aligned} &3^{-n}(15^n-27^n)\\ &=3^{-n}(3^n5^n-3^n9^n)\\ &=3^{-n}\cdot3^n(5^n-9^n)\\ &=5^n-9^n \end{aligned}\)

 

1m

1m

7m

(b)

\(\begin{aligned} \sqrt{4x}-\sqrt{x}&=\dfrac{3}{\sqrt{a}-\sqrt{b}} \\ 2\sqrt{x}-\sqrt{x}&=\dfrac{3}{\sqrt{a}-\sqrt{b}}\times\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}\\ \sqrt{x}&=\dfrac{3(\sqrt{a}+\sqrt{b})}{a-b}\\ x&=\dfrac{9(\sqrt{a}+\sqrt{b})^2}{(a-b)^2}\\ h&=\dfrac{9}{(a-b)^2} \end{aligned}\)

 

 

1m

 

 

 

1m

(c)

\(\begin{aligned} 5e^{n-3}&=e^{-2}\\ \dfrac{e^{n-3}}{e^{-2}}&=\dfrac{1}{5}\\ e^{n-1}&=\dfrac{1}{5}\\ \ln{e^{n-1}}&=\ln{\left(\dfrac{1}{5}\right)}\\ n-1&=\ln{\left(\dfrac{1}{5}\right)} \\ n&=\ln{\left(\dfrac{1}{5}\right)}+1 \\ m&=\dfrac{1}{5} \end{aligned}\)

 

 

1m

 

1m

 

 

1m

 
 
SULIT 5 3472/1
 
  Skema Jawapan Sub Markah Jumlah Markah
5.

(a)

Pak Abu, \(A_n:100,104,108,_\cdots\)
Pak Kasim, \(K_n:400,402,404,_\cdots\)

\(A_n=100+(n-1)(4)\\ K_n=400+(n-1)(2)\) 

\(100+(n-1)(4)\gt 400+(n-1)(2)\)

\(\begin{aligned} 2n&\gt302\\ n&\gt151\\ n&=152 \end{aligned}\)

 

 

1m

 

1m

 

1m

6m

(b)

Jarak ayunan lengkap : \(400,340,289,_\cdots\)

\(a=400\)\(r=0.85\)

\(\begin{aligned} S_n&\lt 2434\\ \dfrac{400[1-0.85^n]}{1-0.85}&\lt2434\\ 0.85^n&\gt0.08725\\ \lg{0.85^n}&\gt\lg{0.08725}\\ n\lg{0.85}&\gt\lg{0.08725}\\ n&\lt\dfrac{\lg{0.08725}}{\lg{0.85}}\\ n&\lt15.007\\ n&=15 \end{aligned}\)

\(\therefore\) Bilangan ayunan lengkap ialah \(15\) ayunan.

 

 

2m

 

 

 

 

 

1m

 
  Skema Jawapan Sub Markah Jumlah Markah
6.
 

\(\dfrac{y}{x^3}=m-\dfrac{n}{x}\) ATAU \(\dfrac{y}{x^2}=mx-n\)

\(\begin{aligned} h&=m-3 \\ n&=6h \\ n&=6m-18 \end{aligned}\)

1m

1m
1m
1m

4m
 
  Skema Jawapan Sub Markah Jumlah Markah
7.
 

\(\dfrac{1}{2}(2x-10)(5x-20)\sin{30^\circ}=1700\)

\(x=\dfrac{-5\pm\sqrt{5^2-4(5)(-3500)}}{2(5)}\)

\(x=26\)

\(62\) m

\(110\) m

1m

 

1m

1m

1m

1m

5m
 
 
SULIT 6 3472/1
 
  Skema Jawapan Sub Markah Jumlah Markah
8.
 

\(16a+12=64a\)

\(a=\dfrac{1}{4}\) DAN \(p=4\)

\(\pi\int_4^{16}4y\ dy=\pi[2y^2]_4^{16}\)

\(\pi[2(16)^2-2(4)^2]\)

\(480\pi\)

1m

1m

 

1m
1m
1m

5m
 
  Skema Jawapan Sub Markah Jumlah Markah
9.
(a) \(|-\overrightarrow{OQ}|=\sqrt{3^2+(-4)^2}\)
  \(5\) unit

1m
1m

4m
(b) \(\overrightarrow{RQ}=\overrightarrow{RO}+\overrightarrow{OQ}\)
  \(-r+q\)

1m
1m

 
  Skema Jawapan Sub Markah Jumlah Markah
10.
(a) \(\angle{BOC}=\pi-2a\)
  \(10\pi-20a\)

1m
1m

6m
(b) \(\theta=1\) rad
  \(\dfrac{1}{2}\times10^2\times2.142\)
  \(\dfrac{1}{2}\times10^2\times2.142-\dfrac{1}{2}\times10\times10\times\sin{122.71^\circ}\)
  \(65.03\)

1m

1m

1m
1m

 
  Skema Jawapan Sub Markah Jumlah Markah
11.
(a) \(\overrightarrow{PR}=\overrightarrow{PQ}+\overrightarrow{QR}\)
  \(\overrightarrow{PR}=4\utilde{u}+18\utilde{v}\)

1m
1m

7m
(b) (i) \(\overrightarrow{TX}=4m\utilde{u}\)
     
  (ii) \(\overrightarrow{PX}=\overrightarrow{PT}+\overrightarrow{TX}\) ATAU \(\overrightarrow{PX}=\lambda\overrightarrow{PR}\) ATAU \(\overrightarrow{PR}=\lambda\overrightarrow{PX}\)
    \(4m\utilde{u}+9\utilde{v}=\lambda(4\utilde{u}+18\utilde{v})\) ATAU \(4\utilde{u}+18\utilde{v}=\lambda(4m\utilde{u}+9\utilde{v})\)
    \(4m=4\lambda\) ATAU \(18\lambda=9\)
    \(200\) meter

1m


1m
1m
1m
1m

 
 
SULIT 7 3472/1
     
  Skema Jawapan Sub Markah Jumlah Markah
12.
(a) \(P(\text{Merah})=\dfrac{9}{4}\) DAN \(P(\text{Biru})=\dfrac{5}{14}\) 
  \({}^8C_0\left( \dfrac{5}{14}\right)^0\left(\dfrac{9}{14}\right)^8\) ATAU \({}^8C_1\left(\dfrac{5}{14}\right)^1\left(\dfrac{9}{14}\right)^7\) ATAU \({}^8C_2\left(\dfrac{5}{14}\right)^2\left(\dfrac{9}{14}\right)^6\) ATAU \({}^8C_3\left(\dfrac{5}{14}\right)^3\left(\dfrac{9}{14}\right)^5\) ATAU \({}^8C_4\left(\dfrac{5}{14}\right)^4\left(\dfrac{9}{14}\right)^4\)
  \(0.1945\)

1m

1m

 

1m

5m
(b) \(1-{}^8C_0\left( \dfrac{5}{14}\right)^0\left(\dfrac{9}{14}\right)^8-{}^8C_1\left(\dfrac{5}{14}\right)^1\left(\dfrac{9}{14}\right)^7-{}^8C_2\left(\dfrac{5}{14}\right)^2\left(\dfrac{9}{14}\right)^6-{}^8C_3\left(\dfrac{5}{14}\right)^3\left(\dfrac{9}{14}\right)^5\)
  \(0.3090\)

1m

 

1

 
  Skema Jawapan Sub Markah Jumlah Markah
13.
(a) \(k=-1\)

1m

8m
(b) \(|2x-3|-1=0\)
  \(x=1\)\(x=2\)

1m
2m

(c) \(2x-3\le2\) DAN \(2x-3\ge-2\) (atau setara)
  \(\dfrac{1}{2}\le x\le \dfrac{5}{2}\)

1m
1m

(d) \(|2x-3|-1=x\)
  \(x=4\) DAN \(x=\dfrac{2}{3}\)

1m
1m

 
  Skema Jawapan Sub Markah Jumlah Markah
14.
(a) \(\dfrac{r}{\sin{\theta}}\)
  \(R=r\left(1+\dfrac{1}{\sin{\theta}}\right)\)

1m

1m

8m
(b) Luas sektor \(=\dfrac{1}{2}(3r)^2\left(\dfrac{\pi}{3}\right)=\dfrac{3}{2}\pi r^2\)
  \(\dfrac{\pi r^2}{\dfrac{3}{2}\pi r^2}\)
  \(\dfrac{2}{3}\)

1m

1m


1m

(c) Panjang lengkok \(=5\left(\dfrac{2\pi}{3}\right)\) @ \(\dfrac{5}{\tan{30^\circ}}\)
  \(\dfrac{10\pi}{3}+2(5\sqrt{3})\)
  \(27.79\) m

1m

1m

1m

 
 
SULIT 8 3472/1
     
  Skema Jawapan Sub Markah Jumlah Markah
15.
 

\(0.1x+0.4y+0.6z=225\)
\(x+y+z=500\)
\(x=2y\)

Hapuskan pemboleh ubah \(z\),

\(5x+2y=750\)

Hapuskan pemboleh ubah \(x\) atau \(y\),

\(5(2y)+2y=750\) ATAU \(5x+2\left(\dfrac{x}{2}\right)=750\)

\(x=125\)
\(y=62.5\)
\(z=312.5\)

1m
1m
1m


1m

 


1m


1m
1m
1m

8m
 

Skema Jawapan SPM Matematik Tambahan Kertas 1 - Set 1

SULIT

JABATAN PEPERIKSAAN
PANDAI EDUCATION

SIJIL PELAJARAN MALAYSIA 2024

MATEMATIK TAMBAHAN
Kertas 1 (Set 1)
3472/1

 

SKEMA JAWAPAN

 
 
SULIT 2 3472/1
 
  Skema Jawapan Sub Markah Jumlah Markah
1.

(a)

\(\begin{aligned} ck+d&=0 \\ ck&=-d \\ k&=-\dfrac{d}{c} \end{aligned}\)

 

Katakan \(g^{-1}(x)=y\)

\(\begin{aligned} g(y)&=x\\ \dfrac{ay+b}{cy+d}&=x \\ ay+b&=xcy+xd \\ y&=\dfrac{dx-b}{-cx+a} \end{aligned}\)

 

\(g^{-1}(x)=\dfrac{-dx+b}{cx-a}\)\(x\ne \dfrac{a}{c}\)

 

 

1m

 

 

 

 

1m

 

1m

6m

(b)

(i)

\(g^{-1}(x)=\dfrac{3x-4}{2x-7}\)\(x\ne \dfrac{7}{2}\)

 

(ii)

\(g^{-1}(x)=\dfrac{5x-3}{x-2}\)\(x\ne 2\)

1m

 

1m

(c)

\(g(x)=g^{-1}(x)\) jika \(a=-d\).

1m

 
  Skema Jawapan Sub Markah Jumlah Markah
2.
 

\(\begin{aligned} 5&\lt 2x^2+x+4 \\ 2x^2+x-1&\gt 0 \\ (2x-1)(x+1)&\gt 0 \\ \end{aligned}\)

\(x\lt -1\)\(x\gt\dfrac{1}{2}\)

 

\(\begin{aligned} 2x^2+x-6&\lt 0\\ (2x-3)(x+2)&\lt0 \end{aligned}\)

\(-2\lt x\lt \dfrac{3}{2}\)

 

\(x\lt -1\)\(x\gt \dfrac{1}{2}\) ATAU \(-2\lt x\lt \dfrac{3}{2}\)

 

\(-2\lt x \lt -1\) ATAU \(\dfrac{1}{2}\lt x \lt \dfrac{3}{2}\)

 

 

 

1m

 

 

1m

 

 

1m

1m

4m
 
 
SULIT 3 3472/1
 
  Skema Jawapan Sub Markah Jumlah Markah
3.

(a)

Bukan, kerana terdapat persamaan yang mempunyai hasil darab dua pemboleh ubah.

1m

5m

(b)

\(\begin{aligned} x-2y&=4 \quad \cdots\boxed{1} \\ 2x-3y+2z&=-2 \quad \cdots\boxed{2} \\ 4x-7y+2z&=6 \quad\cdots\boxed{3} \end{aligned}\)

Dari \(\boxed{1}\),

\(x=4+2y\quad\cdots\boxed{4}\)

Gantikan \(\boxed{4}\) ke dalam \(\boxed{2}\),

\(\begin{aligned} 2(4+2y)-3y+2z&=-2\\ 8+4y-3y+2z&=-2\\ 8+y+2z&=-2\\ y+2z&=-10\quad\cdots\boxed{5} \end{aligned}\)

 

Gantikan \(\boxed{4}\) ke dalam \(\boxed{3}\),

\(\begin{aligned} 4(4+2y)-7y+2z&=6\\ 16+8y-7y+2z&=6\\ 16+y+2z&=6\\ y+2z&=-10\quad\cdots\boxed{6} \end{aligned}\)

 

\(\boxed{5}-\boxed{6}\),

\(0=0\)

 

Maka, sistem persamaan linear ini mempunyai penyelesaian yang tidak terhingga kerana \(0=0\).

 

 

 

 

 

 

 

 

1m

 

 

 

 

1m

 

 

1m

1m

 
 
SULIT 4 3472/1
 
  Skema Jawapan Sub Markah Jumlah Markah
4.

(a)

\(\begin{aligned} &3^{-n}(15^n-27^n)\\ &=3^{-n}(3^n5^n-3^n9^n)\\ &=3^{-n}\cdot3^n(5^n-9^n)\\ &=5^n-9^n \end{aligned}\)

 

1m

1m

7m

(b)

\(\begin{aligned} \sqrt{4x}-\sqrt{x}&=\dfrac{3}{\sqrt{a}-\sqrt{b}} \\ 2\sqrt{x}-\sqrt{x}&=\dfrac{3}{\sqrt{a}-\sqrt{b}}\times\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}\\ \sqrt{x}&=\dfrac{3(\sqrt{a}+\sqrt{b})}{a-b}\\ x&=\dfrac{9(\sqrt{a}+\sqrt{b})^2}{(a-b)^2}\\ h&=\dfrac{9}{(a-b)^2} \end{aligned}\)

 

 

1m

 

 

 

1m

(c)

\(\begin{aligned} 5e^{n-3}&=e^{-2}\\ \dfrac{e^{n-3}}{e^{-2}}&=\dfrac{1}{5}\\ e^{n-1}&=\dfrac{1}{5}\\ \ln{e^{n-1}}&=\ln{\left(\dfrac{1}{5}\right)}\\ n-1&=\ln{\left(\dfrac{1}{5}\right)} \\ n&=\ln{\left(\dfrac{1}{5}\right)}+1 \\ m&=\dfrac{1}{5} \end{aligned}\)

 

 

1m

 

1m

 

 

1m

 
 
SULIT 5 3472/1
 
  Skema Jawapan Sub Markah Jumlah Markah
5.

(a)

Pak Abu, \(A_n:100,104,108,_\cdots\)
Pak Kasim, \(K_n:400,402,404,_\cdots\)

\(A_n=100+(n-1)(4)\\ K_n=400+(n-1)(2)\) 

\(100+(n-1)(4)\gt 400+(n-1)(2)\)

\(\begin{aligned} 2n&\gt302\\ n&\gt151\\ n&=152 \end{aligned}\)

 

 

1m

 

1m

 

1m

6m

(b)

Jarak ayunan lengkap : \(400,340,289,_\cdots\)

\(a=400\)\(r=0.85\)

\(\begin{aligned} S_n&\lt 2434\\ \dfrac{400[1-0.85^n]}{1-0.85}&\lt2434\\ 0.85^n&\gt0.08725\\ \lg{0.85^n}&\gt\lg{0.08725}\\ n\lg{0.85}&\gt\lg{0.08725}\\ n&\lt\dfrac{\lg{0.08725}}{\lg{0.85}}\\ n&\lt15.007\\ n&=15 \end{aligned}\)

\(\therefore\) Bilangan ayunan lengkap ialah \(15\) ayunan.

 

 

2m

 

 

 

 

 

1m

 
  Skema Jawapan Sub Markah Jumlah Markah
6.
 

\(\dfrac{y}{x^3}=m-\dfrac{n}{x}\) ATAU \(\dfrac{y}{x^2}=mx-n\)

\(\begin{aligned} h&=m-3 \\ n&=6h \\ n&=6m-18 \end{aligned}\)

1m

1m
1m
1m

4m
 
  Skema Jawapan Sub Markah Jumlah Markah
7.
 

\(\dfrac{1}{2}(2x-10)(5x-20)\sin{30^\circ}=1700\)

\(x=\dfrac{-5\pm\sqrt{5^2-4(5)(-3500)}}{2(5)}\)

\(x=26\)

\(62\) m

\(110\) m

1m

 

1m

1m

1m

1m

5m
 
 
SULIT 6 3472/1
 
  Skema Jawapan Sub Markah Jumlah Markah
8.
 

\(16a+12=64a\)

\(a=\dfrac{1}{4}\) DAN \(p=4\)

\(\pi\int_4^{16}4y\ dy=\pi[2y^2]_4^{16}\)

\(\pi[2(16)^2-2(4)^2]\)

\(480\pi\)

1m

1m

 

1m
1m
1m

5m
 
  Skema Jawapan Sub Markah Jumlah Markah
9.
(a) \(|-\overrightarrow{OQ}|=\sqrt{3^2+(-4)^2}\)
  \(5\) unit

1m
1m

4m
(b) \(\overrightarrow{RQ}=\overrightarrow{RO}+\overrightarrow{OQ}\)
  \(-r+q\)

1m
1m

 
  Skema Jawapan Sub Markah Jumlah Markah
10.
(a) \(\angle{BOC}=\pi-2a\)
  \(10\pi-20a\)

1m
1m

6m
(b) \(\theta=1\) rad
  \(\dfrac{1}{2}\times10^2\times2.142\)
  \(\dfrac{1}{2}\times10^2\times2.142-\dfrac{1}{2}\times10\times10\times\sin{122.71^\circ}\)
  \(65.03\)

1m

1m

1m
1m

 
  Skema Jawapan Sub Markah Jumlah Markah
11.
(a) \(\overrightarrow{PR}=\overrightarrow{PQ}+\overrightarrow{QR}\)
  \(\overrightarrow{PR}=4\utilde{u}+18\utilde{v}\)

1m
1m

7m
(b) (i) \(\overrightarrow{TX}=4m\utilde{u}\)
     
  (ii) \(\overrightarrow{PX}=\overrightarrow{PT}+\overrightarrow{TX}\) ATAU \(\overrightarrow{PX}=\lambda\overrightarrow{PR}\) ATAU \(\overrightarrow{PR}=\lambda\overrightarrow{PX}\)
    \(4m\utilde{u}+9\utilde{v}=\lambda(4\utilde{u}+18\utilde{v})\) ATAU \(4\utilde{u}+18\utilde{v}=\lambda(4m\utilde{u}+9\utilde{v})\)
    \(4m=4\lambda\) ATAU \(18\lambda=9\)
    \(200\) meter

1m


1m
1m
1m
1m

 
 
SULIT 7 3472/1
     
  Skema Jawapan Sub Markah Jumlah Markah
12.
(a) \(P(\text{Merah})=\dfrac{9}{4}\) DAN \(P(\text{Biru})=\dfrac{5}{14}\) 
  \({}^8C_0\left( \dfrac{5}{14}\right)^0\left(\dfrac{9}{14}\right)^8\) ATAU \({}^8C_1\left(\dfrac{5}{14}\right)^1\left(\dfrac{9}{14}\right)^7\) ATAU \({}^8C_2\left(\dfrac{5}{14}\right)^2\left(\dfrac{9}{14}\right)^6\) ATAU \({}^8C_3\left(\dfrac{5}{14}\right)^3\left(\dfrac{9}{14}\right)^5\) ATAU \({}^8C_4\left(\dfrac{5}{14}\right)^4\left(\dfrac{9}{14}\right)^4\)
  \(0.1945\)

1m

1m

 

1m

5m
(b) \(1-{}^8C_0\left( \dfrac{5}{14}\right)^0\left(\dfrac{9}{14}\right)^8-{}^8C_1\left(\dfrac{5}{14}\right)^1\left(\dfrac{9}{14}\right)^7-{}^8C_2\left(\dfrac{5}{14}\right)^2\left(\dfrac{9}{14}\right)^6-{}^8C_3\left(\dfrac{5}{14}\right)^3\left(\dfrac{9}{14}\right)^5\)
  \(0.3090\)

1m

 

1

 
  Skema Jawapan Sub Markah Jumlah Markah
13.
(a) \(k=-1\)

1m

8m
(b) \(|2x-3|-1=0\)
  \(x=1\)\(x=2\)

1m
2m

(c) \(2x-3\le2\) DAN \(2x-3\ge-2\) (atau setara)
  \(\dfrac{1}{2}\le x\le \dfrac{5}{2}\)

1m
1m

(d) \(|2x-3|-1=x\)
  \(x=4\) DAN \(x=\dfrac{2}{3}\)

1m
1m

 
  Skema Jawapan Sub Markah Jumlah Markah
14.
(a) \(\dfrac{r}{\sin{\theta}}\)
  \(R=r\left(1+\dfrac{1}{\sin{\theta}}\right)\)

1m

1m

8m
(b) Luas sektor \(=\dfrac{1}{2}(3r)^2\left(\dfrac{\pi}{3}\right)=\dfrac{3}{2}\pi r^2\)
  \(\dfrac{\pi r^2}{\dfrac{3}{2}\pi r^2}\)
  \(\dfrac{2}{3}\)

1m

1m


1m

(c) Panjang lengkok \(=5\left(\dfrac{2\pi}{3}\right)\) @ \(\dfrac{5}{\tan{30^\circ}}\)
  \(\dfrac{10\pi}{3}+2(5\sqrt{3})\)
  \(27.79\) m

1m

1m

1m

 
 
SULIT 8 3472/1
     
  Skema Jawapan Sub Markah Jumlah Markah
15.
 

\(0.1x+0.4y+0.6z=225\)
\(x+y+z=500\)
\(x=2y\)

Hapuskan pemboleh ubah \(z\),

\(5x+2y=750\)

Hapuskan pemboleh ubah \(x\) atau \(y\),

\(5(2y)+2y=750\) ATAU \(5x+2\left(\dfrac{x}{2}\right)=750\)

\(x=125\)
\(y=62.5\)
\(z=312.5\)

1m
1m
1m


1m

 


1m


1m
1m
1m

8m