Fraction

This topic explains the basics of fractions in mathematics.
3.1  Fraction

State the quantity by comparison.

 
  Types of Fractions  
  Proper Fraction

  • Based on the diagram above, 3 out of 4 circles are shaded. 3 out of 4 is three over four.
  • Three over four is written as

\(\underline{3}\;\;\;\text{numerator} \\4\;\;\;\text{denominator}\)

  • \(\frac{3}{4}\) is a proper fraction. The numerator is smaller than the denominator.
 
  Equivalent Fractions
  • Equivalent fractions is tqo different fractions that have equal value.

For example:    \(\underline{\;1\;}\\\;2\;\)  is equivalent to \(\underline{\;2\;}\\\;4\;\)

\(\underline{1\times2}=\underline{\;2\;} \\2\times2\;\;\;\;\;\;4\)

\(\underline{\;1\;}=\underline{\;2\;} \\\;2\;\;\;\;\;\;\;4\)

 
  Fractions in the Simplest Form
  • 39 has the same value as 13
  • 3 and 9 can be divided by 3.
3÷39÷3=13      39=13
  • So, 13 is the simplest form of  39
 
  Improper Fractions and Mixed Numbers

                  1                                  34

  • There is one and three over four of the shaded area from the diagram above. 
  • One and three over four is written as 134.

134 is a mixed number.

1 is a whole number.

34 is a proper fraction.

 
  Addition of Fractions

Tips: If the denominator is the same, just add the numenator.

Example,     15+25=35

 
  Substraction of Fractions

Tips: If the denominator is the same, just substract the numenator.

Example,     78-38=48

Tips: Simplify 48

          4÷28÷2=12

So, 78-38=48=12

 
       
 

 

Fraction

This topic explains the basics of fractions in mathematics.
3.1  Fraction

State the quantity by comparison.

 
  Types of Fractions  
  Proper Fraction

  • Based on the diagram above, 3 out of 4 circles are shaded. 3 out of 4 is three over four.
  • Three over four is written as

\(\underline{3}\;\;\;\text{numerator} \\4\;\;\;\text{denominator}\)

  • \(\frac{3}{4}\) is a proper fraction. The numerator is smaller than the denominator.
 
  Equivalent Fractions
  • Equivalent fractions is tqo different fractions that have equal value.

For example:    \(\underline{\;1\;}\\\;2\;\)  is equivalent to \(\underline{\;2\;}\\\;4\;\)

\(\underline{1\times2}=\underline{\;2\;} \\2\times2\;\;\;\;\;\;4\)

\(\underline{\;1\;}=\underline{\;2\;} \\\;2\;\;\;\;\;\;\;4\)

 
  Fractions in the Simplest Form
  • 39 has the same value as 13
  • 3 and 9 can be divided by 3.
3÷39÷3=13      39=13
  • So, 13 is the simplest form of  39
 
  Improper Fractions and Mixed Numbers

                  1                                  34

  • There is one and three over four of the shaded area from the diagram above. 
  • One and three over four is written as 134.

134 is a mixed number.

1 is a whole number.

34 is a proper fraction.

 
  Addition of Fractions

Tips: If the denominator is the same, just add the numenator.

Example,     15+25=35

 
  Substraction of Fractions

Tips: If the denominator is the same, just substract the numenator.

Example,     78-38=48

Tips: Simplify 48

          4÷28÷2=12

So, 78-38=48=12