Refraction of Light

6.1  Refraction of Light
 
  Refraction of light  
 

The bending of a light ray at the boundary of two medium as the light ray propagates from a medium to another with difference optical density.

 
     
 

The speed and direction of light changes when in different medium

 
     
 
  • Light that moves from less dense to denser medium will refracted towards normal.
  • Otherwise, the light that moves from denser to less dense medium will refracted away from normal.
 
  Formula for refraction index, n  
 
  • \(n=\dfrac{\text{sin i}^0}{\text{sin r}^0}\)

 (Snell's law), where \(\text{i}^0\) = incidence angle, \(\text{r}^0\) = refracted angle

 
 
  • \(n=\dfrac{D}{d}\), where D = real depth, d = apparent depth
 
 
  • \(n=\dfrac{c}{v}\)

 where c = velocity of light in air (\(3\times10^8\text{ms}^{-1}\)), v = velocity of light in a medium

 
 
  • \(n=\dfrac{1}{\text{sin c}^0}\)

 where \(\text{c}^0\) = critical angle

 
     
 
 

 

Refraction of Light

6.1  Refraction of Light
 
  Refraction of light  
 

The bending of a light ray at the boundary of two medium as the light ray propagates from a medium to another with difference optical density.

 
     
 

The speed and direction of light changes when in different medium

 
     
 
  • Light that moves from less dense to denser medium will refracted towards normal.
  • Otherwise, the light that moves from denser to less dense medium will refracted away from normal.
 
  Formula for refraction index, n  
 
  • \(n=\dfrac{\text{sin i}^0}{\text{sin r}^0}\)

 (Snell's law), where \(\text{i}^0\) = incidence angle, \(\text{r}^0\) = refracted angle

 
 
  • \(n=\dfrac{D}{d}\), where D = real depth, d = apparent depth
 
 
  • \(n=\dfrac{c}{v}\)

 where c = velocity of light in air (\(3\times10^8\text{ms}^{-1}\)), v = velocity of light in a medium

 
 
  • \(n=\dfrac{1}{\text{sin c}^0}\)

 where \(\text{c}^0\) = critical angle