| 
				
					
						| Example |  
						| \(9\times1=9 \\9\times2=18 \\9\times3=27 \\\) \(9\) is multiplied by \(1,2,3,..\) will produce \(9,18,27,..\). Thus, \(9,18,27,..\) is the multiples of \(9\). |  | 
		
			| 
				
					
						| Solution Methods |  
						| 
							
								
									|  |  
									| Listing the common multiples: |  
									|  |  
									| (i) Determine the LCM of \(2\) and \(3\). Multiples of \(2: 2,4,6,8,..\) Multiples of \(3: 3, 6, 9,..\) Thus, the lowest common multiple of \(2 \) and \(3\) is \(6\).  |  
									|  |  
									| Repeated division: |  
									|  |  
									| (ii) Determine the LCM of \(3,6\) and \(9\). \(\begin{array}{c} 3\\2\\3 \\\phantom{-} \end{array} \begin{array}{|c} \quad3,\,6,\,9\quad\\ \hline \quad1,\,2,\,3\quad\\ \hline \quad1,\,1,\,3\quad\\ \hline \quad1,\,1,\,1\quad\\ \end{array} \begin{array}{c}\end{array}\\\\\) LCM of \(3,6\) and \(9\) is \( 3\times2\times3 = 18\). |  
									|  |  
									| Prime factorisation: |  
									|  |  
									| (iii) Determine the LCM of \(3,8\) and \(12\). \(\begin{aligned} 3&=\quad\quad\quad\quad\quad\,3 \\8&=2\times2\times2 \\12&=\quad\,\,\,\,\,2\times2\times3 \end{aligned}\\\\\) LCM of \(3,8\) and \(12\) is \(2\times2\times2\times3=24\). |  |  |