|  | 
		
			| 
				
					
						| 2.1 | Factors, Prime Factors and Highest Common Factor (HCF) |  | 
		
			|  | 
		
			| 
				
					
						| Factors |  
						| 
							A number that divides another number completely.The factors of \(12\) are \(1, 2,3,4,6\) and \(12\). |  | 
		
			|  | 
		
			| 
				
					
						| Example |  
						| Is \(12\) the factor of \(36\)? |  
						| \(36\div 12=3\) Thus, \(12\) is the factor of \(36\). |  | 
		
			|  | 
		
			| 
				
					
						| Prime Factor |  
						| Factor that is a prime number. |  | 
		
			|  | 
		
			| 
				
					
						| Example |  
						| The factors of \(18\) are \(1, 2,3,6,9\) and \(18\). Between these factors, \(2\) and \(3\) are prime numbers. Thus, the prime factors of \(18\) are \(2\) and \(3\). |  | 
		
			|  | 
		
			| 
				
					
						| Solution Methods |  
						|  |  
						| Repeated division: |  
						|  |  
						| Express \(60\) in the form of prime factorisation. |  
						|  |  
						| Perform division repeatedly by dividing with the smallest prime number. Division is continued until the quotient is \(1\). \(\begin{array}{c} 2\\2\\3\\5 \\\phantom{-} \end{array} \begin{array}{|c} \quad60\quad\\ \hline \quad30\quad\\ \hline \quad15\quad\\ \hline \quad5\quad\\ \hline \quad1\quad\\ \end{array} \begin{array}{c}\end{array}\\\\\) Thus,  \(60=2\times2\times3\times5\). |  
						|  |  
						| Factor trees: |  
						|  |  
						| Express \(60\) in the form of prime factorisation. |  
						|  |  
						| 
 |  
						|  |  
						| Thus,  \(60=2\times2\times3\times5\). |  | 
		
			|  | 
		
			| 
				
					
						| Common Factor |  
						| A number that is a factor of a few other numbers. |  | 
		
			|  | 
		
			| 
				
					
						| Example |  
						| Determine whether \(6\) is a common factor of \(24\) and \(36\). |  
						| \(24\div6=4 \\36\div6=6\) \(24\) and \(36\) can be divided completely by \(6\). Thus, \(6\) is a common factor of \(24\) and \(36\). |  | 
		
			|  | 
		
			| 
				
					
						| Highest Common Factor (HCF) |  
						| The greatest number among the common factors. |  | 
		
			|  | 
		
			| 
				
					
						| Example |  
						| (i) Determine the highest common factor of \(18\) and \( 24\). Listing the common factors: Factors of \(18 : 1 , 2 , 3 , 6 , 9, 18\) Factors of \(24 : 1 , 2 , 3 , 4 , 6 , 8, 12, 24\) So, the common factors of \(18 \) and \(24\) is \(1, 2, 3 \) and \(6\). Thus, HCF is \(6\). |  
						| (ii) Determine the highest common factor of \(30,60\) and \( 72\). Repeated division: \(\begin{array}{c} 2\\2\\3 \\\phantom{-} \end{array} \begin{array}{|c} \quad36,\,60,\,72\quad\\ \hline \quad18,\,30,\,36\quad\\ \hline \quad9,\,15,\,18\quad\\ \hline \quad3,\,5,\,6\quad\\ \end{array} \begin{array}{c}\end{array}\\\\\) Thus, HCF of \(36, 60\) and \(72\) is \(2\times2\times3 = 12\). |  
						| (iii) Determine the highest common factor of \(48,64\) and \(80\). Prime factorisation: \(48 = 2\times2\times 2\times2\times3\) \(64 = 2 × 2 × 2 × 2 × 2 × 2 \) \(80 = 2\times2\times 2\times 2\times5\) Thus, HCF is \(2 × 2 × 2 × 2 = 16\). |  |