For the matrix
\(\begin{pmatrix}a&b\\c&d\end{pmatrix}\),
state the elements in \(X_{11}\) and \(X_{22}\).
(A) \(X_{11}=d, \quad X_{22}=b\)
(B) \(X_{11}=a, \quad X_{22}=d\)
(C) \(X_{11}=d, \quad X_{22}=a\)
(D) \(X_{11}=c, \quad X_{22}=b\)
The inverse of a matrix \(A\), is denoted by \(A^{-1}\) .
What is the product of \(AA^{-1}\)?
Find the product of
\(\left(\! \begin{array}{c} -2 \\ 1 \end{array} \!\right) (-a)\).
(A) \(\left(\! \begin{array}{c} 2a \\ -a \end{array} \!\right) \)
(B) \((2a \space\space -a)\)
(C) \((3a)\)
(D) \((a)\)
Given the matrix equation:
\(\begin{pmatrix} -2 & p \\ 3 & 4 \\ \end{pmatrix} -3\begin{pmatrix} 1 & 2 \\ -2 & 0 \\ \end{pmatrix} = \begin{pmatrix} -5 & -1 \\ q & 4 \\ \end{pmatrix} .\)
Find the values of \(p+q\).
Which of the following statement is true?
\(\begin {pmatrix} -1 & 2 & 3 \\ 4 & 0 & 7 \end {pmatrix}\),
the element in the first row and the second column is \(4\)
\(\begin {pmatrix} 1 \\ -2 \\4 \end {pmatrix}\)
is called a row matrix
The order of the matrix
\(\begin {pmatrix} -3 & 2 \end {pmatrix}\)
is \(2 \times 1\)
Matrix
\(\begin {pmatrix} 2 & 4 \\ 3 & 6 \end {pmatrix}\)
has no inverse matrix
There is something wrong with this question.