In the diagram, \(LMN\) is a triangle.
Find the length of \(LN\).
\( 8.92 \text{ cm}\)
In the diagram, \(ABC\) is a triangle.
Find the length of \(BC\).
\( 7.40 \text{ cm}\)
Given a triangle \(ABC\) such that
\(\begin{aligned} AB&=6.2 \text{ cm}, \\\\ AC &=4.8 \text{ cm}, \\\\ &\text{ and} \\\\ \angle ABC&=43 ^\circ. \end{aligned}\)
Find the possible values of \(\begin{aligned} \angle BCA \end{aligned}\).
\(\begin{aligned} \angle BC_1A&=61.75 ^ \circ \\\\ \angle BC_2A&=118.25 ^\circ \end{aligned}\)
Given a triangle \(DEF\) such that
\(\begin{aligned} DF&=6.5 \text{ cm}, \\\\EF &=6.9 \text{ cm}, \\\\ &\text{ and} \\\\ \angle FED&=68 ^\circ. \end{aligned}\)
Find the possible lengths of \(ED\).
\(\begin{aligned} ED_1 &=5. \, 735 \text{ cm} \\\\ ED_2 &=3. \, 435 \text{ cm} \end{aligned}\)
In a triangle \(GHI,\)
\(\begin{aligned} HI&=7.5 \text{ cm}, \\\\ GI &=5.6 \text{ cm}, \\\\ &\text{ and} \\\\ \angle IHG&=44 ^\circ. \end{aligned}\)
Find the possible values for \(\angle HGI\) and hence find the length of the remaining side of the acute-angled triangle \(GHI\).
\(5. \, 448 \text{ cm}\)
There is something wrong with this question.